Strain rate is a critical factor influencing the mechanical response of hexagonal close-packed titanium under cryogenic conditions.In this study,uniaxial tensile tests were performed on commercially pure titanium at 7...Strain rate is a critical factor influencing the mechanical response of hexagonal close-packed titanium under cryogenic conditions.In this study,uniaxial tensile tests were performed on commercially pure titanium at 77 K over a broad strain rate range from 0.001 to 1 s^(-1).A critical strain rate of approximately 0.5 s^(-1)was identified,above which ductility exhibits a pronounced reduction,whereas below this threshold,ductility remains relatively stable.Through comprehensive analyses of strain evolution,deformed microstructure,and fracture morphology,this behavior is attributed to severe localized adiabatic heating resulting from inhomogeneous deformation,rather than conventional twin or shear mechanisms.展开更多
Two long-term slow slip events(SSEs) in Lower Cook Inlet, Alaska, were identified by Li SS et al.(2016). The earlier SSE lasted at least 9 years with M_(w) ~7.8 and had an average slip rate of ~82 mm/year. The latter ...Two long-term slow slip events(SSEs) in Lower Cook Inlet, Alaska, were identified by Li SS et al.(2016). The earlier SSE lasted at least 9 years with M_(w) ~7.8 and had an average slip rate of ~82 mm/year. The latter SSE, occurring in a similar area, lasted approximately 2 years with M_(w) ~7.2 and an average slip rate of ~91 mm/year. To test whether these SSEs triggered earthquakes near the slow slip area, we calculated the Coulomb stressing rate changes on receiver faults by using two fault geometry definitions: nodal planes of focal mechanism solutions of past earthquakes, and optimally oriented fault planes. Regions in the shallow slab(30–60 km) that experienced a significant increase in the Coulomb stressing rate due to slip by the SSEs showed an increase in seismicity rates during SSE periods. No correlation was found in the volumes that underwent a significant increase in the Coulomb stressing rate during the SSE within the crust and the intermediate slab. We modeled variations in seismicity rates by using a combination of the Coulomb stress transfer model and the framework of rate-and-state friction. Our model indicated that the SSEs increased the Coulomb stress changes on adjacent faults,thereby increasing the seismicity rates even though the ratio of the SSE stressing rate to the background stressing rate was small. Each long-term SSE in Alaska brought the megathrust updip of the SSE areas closer to failure by up to 0.1–0.15 MPa. The volumes of significant Coulomb stress changes caused by the Upper and Lower Cook Inlet SSEs did not overlap.展开更多
BACKGROUND Sessile serrated lesions(SSLs)are premalignant polyps implicated in up to 30%of colorectal cancers.Australia reports high SSL detection rates(SSL-DRs),yet with marked variability(3.1%-24%).This substantial ...BACKGROUND Sessile serrated lesions(SSLs)are premalignant polyps implicated in up to 30%of colorectal cancers.Australia reports high SSL detection rates(SSL-DRs),yet with marked variability(3.1%-24%).This substantial variation raises concerns about missed lesions and post-colonoscopy colorectal cancer.This study investigates determinants associated with SSL-DR variation in regional Australia.AIM To study how patient,clinical,and colonoscopy factors are associated with SSL detection in a regional Australian practice.We aimed to contribute high-detection data to the literature by analyzing the association of SSL detection with various determinants.METHODS This retrospective,cross-sectional analysis examined 1450 colonoscopies performed at Port Macquarie Gastroenterology during 2023.Sigmoidoscopies and repeat procedures were excluded.Multivariate logistic regression analyzed associations between SSL detection and patient demographics,clinical indications,procedural factors,and comorbidities.RESULTS The overall SSL-DR was 30.7%.Multivariate analysis identified several independent predictors:Clinical indication,bowel preparation quality,inflammatory bowel disease status,and serrated polyposis syndrome.The faecal occult blood test positive(FOBT)(+)cohort showed the highest predicted SSL detection probability(39.8%),while clinical symptoms showed the lowest(22.3%).After adjustment,SSL detection odds were 2.3 times greater among FOBT(+)patients than those with clinical symptoms(adjusted odds ratio=2.30,95%confidence interval:1.20-4.40,P=0.004).CONCLUSION SSL-DR as a quality indicator requires contextualization regarding clinical indications,bowel preparation quality,and comorbidities.There was a significantly higher prevalence of SSLs in FOBT(+)patients.Despite comprehensive adjustment,this study cannot fully explain the wide SSL-DR variation in Australia,highlighting the need for standardized detection protocols and further research to ensure optimal cancer prevention outcomes.展开更多
Torreya grandis'Merrillii'is a well-known nut in South China with high nutritional value.Severe premature seed abscission limits the industrial development of T.grandis by causing serious economic losses.Howev...Torreya grandis'Merrillii'is a well-known nut in South China with high nutritional value.Severe premature seed abscission limits the industrial development of T.grandis by causing serious economic losses.However,the physiological mechanisms of seed abscission in T.grandis remain poorly understood.To gain insight into the relationships between carbohydrate status and seed abscission,three-year-old seed-bearing branches were taken as representative materials for the entire tree.Furthermore,the time course of changes in the photosynthetic rate and the non-structural carbohydrate(NSC)dynamics were monitored in the main sources(the one-year-old and two-year-old shoots),and the dry weight and NSC levels of sinks(the seeds,current female cone cluster,and current vegetative cluster)across all seed development stages were recorded.The cumulative seed abscission rate significantly increased,reaching 91.5%from 0 to 72 days after seed protrusion time(SPT).NSC levels in the main sources significantly decreased by 56%-79%,accompanied by a significantly increased photosynthesis rate of 17.1%-49.1%during that period and increased NSC levels in the three sinks.The gene expression level of cell wall invertase(TgCWIN)was significantly correlated with sucrose,fructose,and glucose levels.The carbon storage capacity of the main sources significantly decreased from 6.03 to3.14 mmol C·d^(-1),with a stable photosynthetic capacity,from 0 to 72 days after SPT,whereas the carbon demand of the three sinks showed a continuously increasing trend from 3.14 to 7.71 mmol C·d^(-1).In addition,sucrose supplementation significantly decreased the cumulative seed abscission rate.These results suggest that storage carbohydrates play a major role in the regulatory mechanism of seed abscission in T.grandis.Our study provides a theoretical basis for improving T.grandis yield through establishing a better carbon balance between sources and sinks using timely fertilization or proper pruning procedures.展开更多
Although time-dependent deformation of geomaterials underpins slope-failure prediction models,the influence of strain rate on shearing strength and deformation behavior of loess remains unclear.The consolidated undrai...Although time-dependent deformation of geomaterials underpins slope-failure prediction models,the influence of strain rate on shearing strength and deformation behavior of loess remains unclear.The consolidated undrained(CU)and drained(CD)triaxial testing elucidated the impact of strain rate(0.005–0.3 mm/min)on strength envelopes,deformation moduli,pore pressures,and dilatancy characteristics of unsaturated and quasi-saturated loess.Under drained conditions with a controlled matric suction of 50 kPa,increasing strain rates from 0.005 mm/min to 0.011 mm/min induced decreases in failure deviatoric stress(qf),initial deformation modulus(Ei),and cohesion(c),while friction angles remained unaffected.Specimens displayed initial contractive volumetric strains transitioning to dilation across varying confining pressures.Higher rates diminished contractive volumetric strains and drainage volumes,indicating reduced densification and strength in the shear zone.Under undrained conditions,both unsaturated and quasi-saturated(pore pressure coefficient B=0.75)loess exhibited deteriorating mechanical properties with increasing rates from 0.03 mm/min to 0.3 mm/min.For unsaturated loess,reduced contractive volumetric strains at higher rates manifested relatively looser structures in the pre-peak stress phase.The strength decrement in quasi-saturated loess arose from elevated excess porewater pressures diminishing effective stresses.Negative porewater pressures emerged in quasi-saturated loess at lower confining pressures and strain rates.Compared to previous studies,the qf and Ei exhibited rate sensitivity below threshold values before attaining minima with marginal subsequent influence.The underlying mechanism mirrors the transition from creep to accelerated deformation phase of landslides.展开更多
We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponen...We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponential distributions.Whenever the server is available,it admits the retrial customers into service based on a first-come first-served rule.The service rate adjusts in real-time based on the retrial queue length.An iterative algorithm is proposed to numerically solve the personal optimal problem in the fully observable scenario.Furthermore,we investigate the impact of parameters on the social optimal threshold.The effectiveness of the results is illustrated by two examples.展开更多
In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and the...In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and therefore,the foreign exchange rate model is incorporated.Under the allowing of selling and borrowing,the problem of maximizing the expected exponential utility of terminal wealth is studied.By solving the corresponding Hamilton-Jacobi-Bellman equations,the optimal investment strategies and value functions are obtained.Finally,numerical analysis is presented.展开更多
This letter addresses the recent systematic review and meta-analysis by Wang et al,which evaluated the role of artificial intelligence-based computer-aided de-tection(CADe)in reducing adenoma and polyp miss rates duri...This letter addresses the recent systematic review and meta-analysis by Wang et al,which evaluated the role of artificial intelligence-based computer-aided de-tection(CADe)in reducing adenoma and polyp miss rates during colonoscopy.We commend the authors for highlighting adenoma miss rate(AMR)as a more clinically meaningful endpoint than the traditionally used adenoma detection rate.Their findings demonstrate a significant reduction in AMR and polyp miss rate with CADe-assisted colonoscopy,particularly in small and sessile serrated lesions.However,limitations,including limited study numbers,tandem study design of included studies,and heterogeneity of CADe systems,warrant cautious interpretation.We discuss the broader implications of these findings for real-world practice and future research directions.This letter reinforces the importance of AMR as a performance metric and supports the continued integration and eva-luation of artificial intelligence technologies in endoscopic practice to enhance colorectal cancer prevention strategies.展开更多
Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in...Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in the impact load mitigation where an external kinetic energy is absorbed by the deformation/crushing of lattice cells.This has motivated a growing number of experimental and numerical studies,recently,on the crushing behavior of additively produced lattice structures.The present study overviews the dynamic and quasi-static crushing behavior of additively produced Ti64,316L,and AlSiMg alloy lattice structures.The first part of the study summarizes the main features of two most commonly used additive processing techniques for lattice structures,namely selective-laser-melt(SLM)and electro-beam-melt(EBM),along with a description of commonly observed process induced defects.In the second part,the deformation and strain rate sensitivities of the selected alloy lattices are outlined together with the most widely used dynamic test methods,followed by a part on the observed micro-structures of the SLM and EBM-processed Ti64,316L and AlSiMg alloys.Finally,the experimental and numerical studies on the quasi-static and dynamic compression behavior of the additively processed Ti64,316L,and AlSiMg alloy lattices are reviewed.The results of the experimental and numerical studies of the dynamic properties of various types of lattices,including graded,non-uniform strut size,hollow,non-uniform cell size,and bio-inspired,were tabulated together with the used dynamic testing methods.The dynamic tests have been noted to be mostly conducted in compression Split Hopkinson Pressure Bar(SHPB)or Taylor-and direct-impact tests using the SHPB set-up,in all of which relatively small-size test specimens were tested.The test specimen size effect on the compression behavior of the lattices was further emphasized.It has also been shown that the lattices of Ti64 and AlSiMg alloys are relatively brittle as compared with the lattices of 316L alloy.Finally,the challenges associated with modelling lattice structures were explained and the micro tension tests and multi-scale modeling techniques combining microstructural characteristics with macroscopic lattice dynamics were recommended to improve the accuracy of the numerical simulations of the dynamic compression deformations of metallic lattice structures.展开更多
Accurately correlating the sweating rate and the concentration of biomarkers in sweat is essential in many sweat-based diagnostic applications.These two measurements are always done simultaneously in wearable sweat se...Accurately correlating the sweating rate and the concentration of biomarkers in sweat is essential in many sweat-based diagnostic applications.These two measurements are always done simultaneously in wearable sweat sensing platforms.However,concentration measurements of biomarkers are always delayed on the timeline compared with their production,whereas there is no such delay for sweating rate.Thus,a timeline mismatch exists between these two measurements.This means that the concentration vs rate correlation constructed on the basis of such measurements will deviate from the actual correlation.This study demonstrates the existence of this mismatch and explains its cause using sweat Na^(+)measurements.It also proposes an effective approach that applies a point-by-point compensation for the delay between Na+measurements and the real-time sweating rates,such that the data on the repositioned concentration vs time curve correspond to exactly the same point on the timeline as their production.A vison sensor is developed to measure the sweating rate with high accuracy at a frequency of more than 0.1 Hz.Off-body and on-body measurements of sweating rate and Na^(+)concentration are carried out,and concentration–rate correlations are constructed using both measured and repositioned concentration curves.The least squares and random forest methods are employed to fit the constructed correlations and evaluate the reliability of the proposed approach.The use of the repositioned concentration curve gives a constructed correlation that is much closer to the actual one.This study indicates the necessity to rearrange sensor-measured biomarker concentration vs time curves when correlations of concentration with sweating rate need to be constructed and proposes a practical point-by-point data repositioning strategy for doing so.The results presented here will benefit the study of sweat biomarkers with unclear correlations with sweating rate,as well as providing a basis for the development of more reliable sweat-based diagnostic methods.展开更多
Island-arc magmatism is a crucial process in the Earth’s crustal growth.However,how the island-arc magma production rate(MPR)changes and the key influencing factors remains unclear.This study employs numerical models...Island-arc magmatism is a crucial process in the Earth’s crustal growth.However,how the island-arc magma production rate(MPR)changes and the key influencing factors remains unclear.This study employs numerical models to simulate island-arc growth,incorporating slab dehydration,mantle hydration and melting,and melt extraction.In addition,the impacts of convergence rate and slab dip angle on island-arc magma production were studied.Results suggest that,(1)MPR increases with higher convergence rates;high convergence rates enhance slab water transport efficiency and mantle wedge convection,thereby promoting water fraction and temperature in potential molten regions;(2)MPR initially rises and then falls as the slab dip angle varies from 30°to 45°,and to 60°.This variation is closely tied to water content in the wedge rather than mantle temperature.However,a higher slab dip promotes dehydration towards the potential-melting mantle wedge,which causes water to ascend to shallow areas and reduces the area of the potential molten region.Ultimately,a dip angle of 45°is optimal for retaining the most suitable water fraction and mantle wedge area,thereby maintaining the largest MPR;(3)convergence rate variation has a much larger influence on magma production rate than dip angle variation.When the convergence rate varies from 2 to 10 cm/a,the largest time-averaged MPR is 64.0 times the smallest one,whereas when the slab dip varies from 30°to 60°,the largest time-averaged MPR is only 3.5 times the smallest one.These findings align with numerous instances observed in modern-day subduction zones.展开更多
Intradialytic hypotension(IDH)is a prevalent and critical complication of haemodialysis associated with significant morbidity,mortality,and reduced quality of life in end-stage renal disease patients.IDH results from ...Intradialytic hypotension(IDH)is a prevalent and critical complication of haemodialysis associated with significant morbidity,mortality,and reduced quality of life in end-stage renal disease patients.IDH results from multifactorial interactions,including excessive ultrafiltration rates(UFR),rapid osmotic shifts,impaired vascular resistance,and comorbidities such as diabetes and cardiovascular disease.It triggers hypovolemic stress,leading to myocardial stunning,cerebral ischemia,and organ dysfunction.Non-modifiable risk factors,including age and preexisting conditions,exacerbate susceptibility,while modifiable elements such as high interdialytic weight gain and improper dialysis prescriptions worsen outcomes.In this review,we aim to conduct an in-depth analysis of IDH,exploring its clinical relevance,underlying mechanisms,risk factors,and management approaches.Additionally,we advocate for a standardised definition and propose a strategic framework to guide future research efforts.Effective management requires individualised approaches,including optimised UFR,cooled dialysate,and nutritional adjustments,alongside emerging technologies like bio-impedance spectroscopy and artificial intelligence for real-time risk prediction.A multidisciplinary team approach,incorporating nephrologists,nurses,and dietitians,is essential for holistic patient care.Future research and technological advancements hold promise for mitigating IDH’s clinical and systemic impact,ultimately improving patient outcomes and survival.展开更多
Kinesin is an archetypal microtubule-based molecular motor that can generate force to transport cargo in cells. The load dependence of the detachment rate is an important factor of the kinesin motor, the determination...Kinesin is an archetypal microtubule-based molecular motor that can generate force to transport cargo in cells. The load dependence of the detachment rate is an important factor of the kinesin motor, the determination of which is critically related to the chemomechanical coupling mechanism of the motor. Here, we use three models for the load dependence of the detachment rate of the kinesin motor to study theoretically and numerically the maximal force generated and microtubuleattachment duration of the motor. By comparing the theoretical and numerical results with the available experimental data,we show that only one model can explain well the available experimental data, indicating that only this model can be applicable to the kinesin motor.展开更多
Under the“dual carbon”goals,this paper constructs an optimization model of the comprehensive energy system in the park.A stepwise carbon excess rate mechanism and an electric vehicle coupling strategy are proposed:A...Under the“dual carbon”goals,this paper constructs an optimization model of the comprehensive energy system in the park.A stepwise carbon excess rate mechanism and an electric vehicle coupling strategy are proposed:A carbon quota trading system is established based on the baseline method,and the stepwise function is adopted to quantify the cost of excess carbon emissions;Introduce the price demand response and the two-way interaction mechanism of electric Vehicle vehicle-to-grid(V2G)to enhance the flexible regulation ability.Aiming at the uncertainty of wind and solar output,a typical scene set is generated by combining Latin hypercube sampling with the scene reduction method.The goal is to minimize the operating cost and maximize the consumption of renewable energy,and it is solved through the CPLEX solver in the MATLAB platform.Through simulation verification of the proposed models and methods in various scenarios,the simulation results show that under the coupling of the carbon excess rate trading mechanism,the demand response mechanism,and the vehicle-to-grid interaction of electric vehicles,the total daily operating cost of the system decreases by 25.3%,reduce the dual pressure of energy consumption costs and the economic environment,and achieve the coordinated optimization of economic and ecological benefits.展开更多
Modeling HIV/AIDS progression is critical for understanding disease dynamics and improving patient care. This study compares the Exponential and Weibull survival models, focusing on their ability to capture state-spec...Modeling HIV/AIDS progression is critical for understanding disease dynamics and improving patient care. This study compares the Exponential and Weibull survival models, focusing on their ability to capture state-specific failure rates in HIV/AIDS progression. While the Exponential model offers simplicity with a constant hazard rate, it often fails to accommodate the complexities of dynamic disease progression. In contrast, the Weibull model provides flexibility by allowing hazard rates to vary over time. Both models are evaluated within the frameworks of the Cox Proportional Hazards (Cox PH) and Accelerated Failure Time (AFT) models, incorporating critical covariates such as age, gender, CD4 count, and ART status. Statistical evaluation metrics, including Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), log-likelihood, and Pseudo-R2, were employed to assess model performance across diverse patient subgroups. Results indicate that the Weibull model consistently outperforms the Exponential model in dynamic scenarios, such as younger patients and those with co-infections, while maintaining robustness in stable contexts. This study highlights the trade-off between flexibility and simplicity in survival modeling, advocating for tailored model selection to balance interpretability and predictive accuracy. These findings provide valuable insights for optimizing HIV/AIDS management strategies and advancing survival analysis methodologies.展开更多
Rational allocation of water flow energy in river networks is essential to addressing water-related issues in river network areas.However,current methods of calculating the spatiotemporal distribution of flow energy i...Rational allocation of water flow energy in river networks is essential to addressing water-related issues in river network areas.However,current methods of calculating the spatiotemporal distribution of flow energy in river networks lack precision and efficiency.This paper introduces a novel hydrodynamic representation,the energy flow rate,defined as the product of the flow rate and kinetic energy head,to quantify the kinetic energy stored and transported in river networks.A linear equation system for the energy flow rate in a river network has been theoretically derived,enabling rapid calculations under steady flow conditions.A simplified equation is proposed to describe the exponential decay of the energy flow rate,accompanied by potential energy conversion.The coefficients in the linear equation system are determined using control equations at flow confluence and diversion nodes.This study provides foundational insights that can be used to develop new hydrodynamic modeling strategies to regulate water flow energy and achieve coordinated management of water-related issues in river networks.展开更多
Investigation of thermal effects on the strain rate-dependent properties of compacted bentonite is crucial for the long-term safety assessment of deep geological repository for disposal of high-level radioactive waste...Investigation of thermal effects on the strain rate-dependent properties of compacted bentonite is crucial for the long-term safety assessment of deep geological repository for disposal of high-level radioactive waste.In the present work,cylindrical GMZ01 bentonite specimens were compacted with suction-controlled by the vapor equilibrium technique.Then,a series of temperature-and suction-controlled stepwise constant rate of strain(CRS)tests was performed and the rate-dependent compressibility behavior of the highly compacted GMZ01 bentonite was investigated.The plastic compressibility parameterλ,the elastic compressibility parameterκ,the yield stress p0,as well as the viscous parameterαwere determined.Results indicate thatλ,κandαdecrease and p0 increases as suction increases.Upon heating,parametersλ,αand p0 decrease.It is also found that p0 increases linearly with increasing CRS in a double-logarithm coordinate.Based on the experimental results,a viscosity parameterα(s,T)was fitted to capture the effects of suction s and temperature T on the relationship between yield stress and strain rate.Then,an elastic-thermo-viscoplastic model for unsaturated soils was developed to describe the thermal effects on the rate-dependent behavior of highly compacted GMZ01 bentonite.Validation showed that the calculated results agreed well to the measured ones.展开更多
Unsaturated alcohols are a class of Biogenic volatile organic compounds(BVOCs)emitted in large quantities by plants when damaged or under adverse environmental conditions,and studies on their atmospheric degradation a...Unsaturated alcohols are a class of Biogenic volatile organic compounds(BVOCs)emitted in large quantities by plants when damaged or under adverse environmental conditions,and studies on their atmospheric degradation at night are still lacking.We used chamber experiments to study the gas-phase reactions of three unsaturated alcohols,E-2-penten-1-ol,Z-2-hexen-1-ol and Z-3-hepten-1-ol,with NO_(3)radicals(NO_(3)•)during the night.The rate constants of these reactions were(11.7±1.76)×10^(−13),(8.55±1.33)×10^(−13)and(6.08±0.47)×10^(−13)cm^(3)/(molecule·s)at 298K and 760 Torr,respectively.In contrast,the reaction rate of similar substances with ozone was about 10^(−18)cm^(3)/(molecule·s),which indicates that the reaction with NO_(3)•is themain oxidation pathway for unsaturated alcohols at night.Small molecule aldehydes and ketones were the main gas-phase organic products of the reaction of three aldehydes and ketones with NO_(3)•,and the total small molecule aldehydes and ketones yields can reach between 45%-60%.They mainly originate from the breakage of alkoxy radicals,and different breakage sites determine different product distributions.In addition,the SOA yields of the three unsaturated alcohols with NO_(3)•were 7.1%±1.0%,12.5%±1.9%and 30.0%±4.5%,respectively,whichweremuch higher than those of similarly structured substances with O_(3)or OH radicals(•OH).The results of high-resolution mass spectrometry shows that the main components of Secondary organic aerosol(SOA)of the three unsaturated alcohols are dimeric compounds containing several nitrate groups,which are formed through the polymerization of oxyalkyl radicals.展开更多
This study presents an in-depth investigation into the shear strength characteristics of unsaturated soils,focusing on the influenceof shear rate and initial water saturation(S_(r0)).Utilizing the drained-vented(DV)tr...This study presents an in-depth investigation into the shear strength characteristics of unsaturated soils,focusing on the influenceof shear rate and initial water saturation(S_(r0)).Utilizing the drained-vented(DV)triaxial test method,the present study investigated the shear strength behavior of silty clay under various shear rates and water saturation levels,and compared the outcomes with traditional suction-controlled(SC)and constant water content(CW)tests.The findingshighlight the pivotal role of excess pore water pressure dissipation during shearing,which significantlyaffects the shear strength of both saturated and unsaturated soils.Notably,for soils with high initial water saturation,a decrease in shear strength is observed with an increase in shear rate,which is attributed to the rise in pore water pressure.Conversely,for soils with low initial water saturation,the shear rate exhibits minimal impact on shear strength due to negligible water drainage.The research delineates the optimal shear rates for DV tests based on the initial water saturation:a slower rate of 0.0028 mm/min for samples with high water saturation(S_(r0)>66%)and a faster rate of 0.8 mm/min for samples with low water saturation(S_(r0)≤66%).A novel testing methodology for determining unsaturated soil shear strength under DV conditions is introduced,streamlining the measurement process and significantly reducing testing time.This method not only promises substantial cost savings but also aligns closely with natural engineering conditions,offering valuable guidance for geotechnical applications.展开更多
CO_(2) hydrate-based sequestration in submarine sediments shows great potential for carbon emission reduction.Considering the proportional relationship of CO_(2) and water for hydrates formation,their existing ratio l...CO_(2) hydrate-based sequestration in submarine sediments shows great potential for carbon emission reduction.Considering the proportional relationship of CO_(2) and water for hydrates formation,their existing ratio largely determines the CO_(2) sequestration density and phase state.Here,this work focuses on determining the optimal ratio of CO_(2) to seawater in sediments simulated with 20-40 mesh(0.42-0.85 mm) quartz sand,in order to maximize CO_(2) hydrate conversion in sediments.The results show that the conversion rate of CO_(2) hydrate increases with the initial water saturation,reaching 15.3%at 80% initial water saturation.The optimal CO_(2) hydrate formation occurs at 30% initial water saturation,with the corresponding CO_(2) storage density in hydrate form of 33.09 kg·m^(-3) and the hydrate saturation of 22.3%.However,CO_(2) hydrate conversion rate is <10%,which implies that most CO2 still exists in liquid state,despite the presence of free water.The total CO_(2) sequestration density is negatively correlated with the initial water saturation,and at 10% initial water saturation,398.73 kg·m^(-3) of CO_(2) is sequestered,of which only 18.02 kg·m^(-3) is hydrated.Additionally,the lower initial water saturation corresponds to the shorter time to achieve t_(90) of CO_(2) consumption,and the water conversion rate to hydrate reaches 90% at 10% initial water saturation.In summary,adjusting the volume ratio of liquid CO_(2) to seawater can effectively increase the sequestration amount of CO_(2) hydrates,but methods to increase CO_(2) conversion to hydrate still need to be established.展开更多
基金financially supported by the National Key Research&Development Plan(No.2022YFE0110600)the National Natural Science Foundation of China(Nos.52171117,52371113,92263201 and 52175306)+3 种基金Qing Lan Project(No.54944004)the Basic Research Program of Jiangsu(Nos.BK20232011 and BK20232025)the Postdoctoral Fellowship Program of CPSF(No.GZC20233481)Tuoyuan project of Nanjing Tech University(No.20230113)
文摘Strain rate is a critical factor influencing the mechanical response of hexagonal close-packed titanium under cryogenic conditions.In this study,uniaxial tensile tests were performed on commercially pure titanium at 77 K over a broad strain rate range from 0.001 to 1 s^(-1).A critical strain rate of approximately 0.5 s^(-1)was identified,above which ductility exhibits a pronounced reduction,whereas below this threshold,ductility remains relatively stable.Through comprehensive analyses of strain evolution,deformed microstructure,and fracture morphology,this behavior is attributed to severe localized adiabatic heating resulting from inhomogeneous deformation,rather than conventional twin or shear mechanisms.
基金supported by the National Natural Science Foundation of China (Grant No. 42104001)。
文摘Two long-term slow slip events(SSEs) in Lower Cook Inlet, Alaska, were identified by Li SS et al.(2016). The earlier SSE lasted at least 9 years with M_(w) ~7.8 and had an average slip rate of ~82 mm/year. The latter SSE, occurring in a similar area, lasted approximately 2 years with M_(w) ~7.2 and an average slip rate of ~91 mm/year. To test whether these SSEs triggered earthquakes near the slow slip area, we calculated the Coulomb stressing rate changes on receiver faults by using two fault geometry definitions: nodal planes of focal mechanism solutions of past earthquakes, and optimally oriented fault planes. Regions in the shallow slab(30–60 km) that experienced a significant increase in the Coulomb stressing rate due to slip by the SSEs showed an increase in seismicity rates during SSE periods. No correlation was found in the volumes that underwent a significant increase in the Coulomb stressing rate during the SSE within the crust and the intermediate slab. We modeled variations in seismicity rates by using a combination of the Coulomb stress transfer model and the framework of rate-and-state friction. Our model indicated that the SSEs increased the Coulomb stress changes on adjacent faults,thereby increasing the seismicity rates even though the ratio of the SSE stressing rate to the background stressing rate was small. Each long-term SSE in Alaska brought the megathrust updip of the SSE areas closer to failure by up to 0.1–0.15 MPa. The volumes of significant Coulomb stress changes caused by the Upper and Lower Cook Inlet SSEs did not overlap.
文摘BACKGROUND Sessile serrated lesions(SSLs)are premalignant polyps implicated in up to 30%of colorectal cancers.Australia reports high SSL detection rates(SSL-DRs),yet with marked variability(3.1%-24%).This substantial variation raises concerns about missed lesions and post-colonoscopy colorectal cancer.This study investigates determinants associated with SSL-DR variation in regional Australia.AIM To study how patient,clinical,and colonoscopy factors are associated with SSL detection in a regional Australian practice.We aimed to contribute high-detection data to the literature by analyzing the association of SSL detection with various determinants.METHODS This retrospective,cross-sectional analysis examined 1450 colonoscopies performed at Port Macquarie Gastroenterology during 2023.Sigmoidoscopies and repeat procedures were excluded.Multivariate logistic regression analyzed associations between SSL detection and patient demographics,clinical indications,procedural factors,and comorbidities.RESULTS The overall SSL-DR was 30.7%.Multivariate analysis identified several independent predictors:Clinical indication,bowel preparation quality,inflammatory bowel disease status,and serrated polyposis syndrome.The faecal occult blood test positive(FOBT)(+)cohort showed the highest predicted SSL detection probability(39.8%),while clinical symptoms showed the lowest(22.3%).After adjustment,SSL detection odds were 2.3 times greater among FOBT(+)patients than those with clinical symptoms(adjusted odds ratio=2.30,95%confidence interval:1.20-4.40,P=0.004).CONCLUSION SSL-DR as a quality indicator requires contextualization regarding clinical indications,bowel preparation quality,and comorbidities.There was a significantly higher prevalence of SSLs in FOBT(+)patients.Despite comprehensive adjustment,this study cannot fully explain the wide SSL-DR variation in Australia,highlighting the need for standardized detection protocols and further research to ensure optimal cancer prevention outcomes.
基金supported by grants from the National Science Foundation of China(Grant Nos.U20A2049 and 32271922)。
文摘Torreya grandis'Merrillii'is a well-known nut in South China with high nutritional value.Severe premature seed abscission limits the industrial development of T.grandis by causing serious economic losses.However,the physiological mechanisms of seed abscission in T.grandis remain poorly understood.To gain insight into the relationships between carbohydrate status and seed abscission,three-year-old seed-bearing branches were taken as representative materials for the entire tree.Furthermore,the time course of changes in the photosynthetic rate and the non-structural carbohydrate(NSC)dynamics were monitored in the main sources(the one-year-old and two-year-old shoots),and the dry weight and NSC levels of sinks(the seeds,current female cone cluster,and current vegetative cluster)across all seed development stages were recorded.The cumulative seed abscission rate significantly increased,reaching 91.5%from 0 to 72 days after seed protrusion time(SPT).NSC levels in the main sources significantly decreased by 56%-79%,accompanied by a significantly increased photosynthesis rate of 17.1%-49.1%during that period and increased NSC levels in the three sinks.The gene expression level of cell wall invertase(TgCWIN)was significantly correlated with sucrose,fructose,and glucose levels.The carbon storage capacity of the main sources significantly decreased from 6.03 to3.14 mmol C·d^(-1),with a stable photosynthetic capacity,from 0 to 72 days after SPT,whereas the carbon demand of the three sinks showed a continuously increasing trend from 3.14 to 7.71 mmol C·d^(-1).In addition,sucrose supplementation significantly decreased the cumulative seed abscission rate.These results suggest that storage carbohydrates play a major role in the regulatory mechanism of seed abscission in T.grandis.Our study provides a theoretical basis for improving T.grandis yield through establishing a better carbon balance between sources and sinks using timely fertilization or proper pruning procedures.
文摘Although time-dependent deformation of geomaterials underpins slope-failure prediction models,the influence of strain rate on shearing strength and deformation behavior of loess remains unclear.The consolidated undrained(CU)and drained(CD)triaxial testing elucidated the impact of strain rate(0.005–0.3 mm/min)on strength envelopes,deformation moduli,pore pressures,and dilatancy characteristics of unsaturated and quasi-saturated loess.Under drained conditions with a controlled matric suction of 50 kPa,increasing strain rates from 0.005 mm/min to 0.011 mm/min induced decreases in failure deviatoric stress(qf),initial deformation modulus(Ei),and cohesion(c),while friction angles remained unaffected.Specimens displayed initial contractive volumetric strains transitioning to dilation across varying confining pressures.Higher rates diminished contractive volumetric strains and drainage volumes,indicating reduced densification and strength in the shear zone.Under undrained conditions,both unsaturated and quasi-saturated(pore pressure coefficient B=0.75)loess exhibited deteriorating mechanical properties with increasing rates from 0.03 mm/min to 0.3 mm/min.For unsaturated loess,reduced contractive volumetric strains at higher rates manifested relatively looser structures in the pre-peak stress phase.The strength decrement in quasi-saturated loess arose from elevated excess porewater pressures diminishing effective stresses.Negative porewater pressures emerged in quasi-saturated loess at lower confining pressures and strain rates.Compared to previous studies,the qf and Ei exhibited rate sensitivity below threshold values before attaining minima with marginal subsequent influence.The underlying mechanism mirrors the transition from creep to accelerated deformation phase of landslides.
基金supported by the National Natural Science Foundation of China(Grant No.11971486)。
文摘We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponential distributions.Whenever the server is available,it admits the retrial customers into service based on a first-come first-served rule.The service rate adjusts in real-time based on the retrial queue length.An iterative algorithm is proposed to numerically solve the personal optimal problem in the fully observable scenario.Furthermore,we investigate the impact of parameters on the social optimal threshold.The effectiveness of the results is illustrated by two examples.
基金supported by the National Natural Science Foundation of China(Grant No.12301603).
文摘In this paper,we study the optimal investment problem of an insurer whose surplus process follows the diffusion approximation of the classical Cramer-Lundberg model.Investment in the foreign markets is allowed,and therefore,the foreign exchange rate model is incorporated.Under the allowing of selling and borrowing,the problem of maximizing the expected exponential utility of terminal wealth is studied.By solving the corresponding Hamilton-Jacobi-Bellman equations,the optimal investment strategies and value functions are obtained.Finally,numerical analysis is presented.
文摘This letter addresses the recent systematic review and meta-analysis by Wang et al,which evaluated the role of artificial intelligence-based computer-aided de-tection(CADe)in reducing adenoma and polyp miss rates during colonoscopy.We commend the authors for highlighting adenoma miss rate(AMR)as a more clinically meaningful endpoint than the traditionally used adenoma detection rate.Their findings demonstrate a significant reduction in AMR and polyp miss rate with CADe-assisted colonoscopy,particularly in small and sessile serrated lesions.However,limitations,including limited study numbers,tandem study design of included studies,and heterogeneity of CADe systems,warrant cautious interpretation.We discuss the broader implications of these findings for real-world practice and future research directions.This letter reinforces the importance of AMR as a performance metric and supports the continued integration and eva-luation of artificial intelligence technologies in endoscopic practice to enhance colorectal cancer prevention strategies.
基金the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 101034425 for the project titled A2M2TECHThe Scientific and Technological Research Council of Türkiye (TUBITAK) with grant No 120C158 for the same A2M2TECH project under the TUBITAK's 2236/B program
文摘Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in the impact load mitigation where an external kinetic energy is absorbed by the deformation/crushing of lattice cells.This has motivated a growing number of experimental and numerical studies,recently,on the crushing behavior of additively produced lattice structures.The present study overviews the dynamic and quasi-static crushing behavior of additively produced Ti64,316L,and AlSiMg alloy lattice structures.The first part of the study summarizes the main features of two most commonly used additive processing techniques for lattice structures,namely selective-laser-melt(SLM)and electro-beam-melt(EBM),along with a description of commonly observed process induced defects.In the second part,the deformation and strain rate sensitivities of the selected alloy lattices are outlined together with the most widely used dynamic test methods,followed by a part on the observed micro-structures of the SLM and EBM-processed Ti64,316L and AlSiMg alloys.Finally,the experimental and numerical studies on the quasi-static and dynamic compression behavior of the additively processed Ti64,316L,and AlSiMg alloy lattices are reviewed.The results of the experimental and numerical studies of the dynamic properties of various types of lattices,including graded,non-uniform strut size,hollow,non-uniform cell size,and bio-inspired,were tabulated together with the used dynamic testing methods.The dynamic tests have been noted to be mostly conducted in compression Split Hopkinson Pressure Bar(SHPB)or Taylor-and direct-impact tests using the SHPB set-up,in all of which relatively small-size test specimens were tested.The test specimen size effect on the compression behavior of the lattices was further emphasized.It has also been shown that the lattices of Ti64 and AlSiMg alloys are relatively brittle as compared with the lattices of 316L alloy.Finally,the challenges associated with modelling lattice structures were explained and the micro tension tests and multi-scale modeling techniques combining microstructural characteristics with macroscopic lattice dynamics were recommended to improve the accuracy of the numerical simulations of the dynamic compression deformations of metallic lattice structures.
基金support from the National Natural Science Foundation of China(Grant No.61901295)the Nanchang Microsystem Institute of Tianjin University.
文摘Accurately correlating the sweating rate and the concentration of biomarkers in sweat is essential in many sweat-based diagnostic applications.These two measurements are always done simultaneously in wearable sweat sensing platforms.However,concentration measurements of biomarkers are always delayed on the timeline compared with their production,whereas there is no such delay for sweating rate.Thus,a timeline mismatch exists between these two measurements.This means that the concentration vs rate correlation constructed on the basis of such measurements will deviate from the actual correlation.This study demonstrates the existence of this mismatch and explains its cause using sweat Na^(+)measurements.It also proposes an effective approach that applies a point-by-point compensation for the delay between Na+measurements and the real-time sweating rates,such that the data on the repositioned concentration vs time curve correspond to exactly the same point on the timeline as their production.A vison sensor is developed to measure the sweating rate with high accuracy at a frequency of more than 0.1 Hz.Off-body and on-body measurements of sweating rate and Na^(+)concentration are carried out,and concentration–rate correlations are constructed using both measured and repositioned concentration curves.The least squares and random forest methods are employed to fit the constructed correlations and evaluate the reliability of the proposed approach.The use of the repositioned concentration curve gives a constructed correlation that is much closer to the actual one.This study indicates the necessity to rearrange sensor-measured biomarker concentration vs time curves when correlations of concentration with sweating rate need to be constructed and proposes a practical point-by-point data repositioning strategy for doing so.The results presented here will benefit the study of sweat biomarkers with unclear correlations with sweating rate,as well as providing a basis for the development of more reliable sweat-based diagnostic methods.
基金Supported by the National Natural Science Foundation of China(Nos.42176068,42476063,92058213,42376081,42121005)。
文摘Island-arc magmatism is a crucial process in the Earth’s crustal growth.However,how the island-arc magma production rate(MPR)changes and the key influencing factors remains unclear.This study employs numerical models to simulate island-arc growth,incorporating slab dehydration,mantle hydration and melting,and melt extraction.In addition,the impacts of convergence rate and slab dip angle on island-arc magma production were studied.Results suggest that,(1)MPR increases with higher convergence rates;high convergence rates enhance slab water transport efficiency and mantle wedge convection,thereby promoting water fraction and temperature in potential molten regions;(2)MPR initially rises and then falls as the slab dip angle varies from 30°to 45°,and to 60°.This variation is closely tied to water content in the wedge rather than mantle temperature.However,a higher slab dip promotes dehydration towards the potential-melting mantle wedge,which causes water to ascend to shallow areas and reduces the area of the potential molten region.Ultimately,a dip angle of 45°is optimal for retaining the most suitable water fraction and mantle wedge area,thereby maintaining the largest MPR;(3)convergence rate variation has a much larger influence on magma production rate than dip angle variation.When the convergence rate varies from 2 to 10 cm/a,the largest time-averaged MPR is 64.0 times the smallest one,whereas when the slab dip varies from 30°to 60°,the largest time-averaged MPR is only 3.5 times the smallest one.These findings align with numerous instances observed in modern-day subduction zones.
文摘Intradialytic hypotension(IDH)is a prevalent and critical complication of haemodialysis associated with significant morbidity,mortality,and reduced quality of life in end-stage renal disease patients.IDH results from multifactorial interactions,including excessive ultrafiltration rates(UFR),rapid osmotic shifts,impaired vascular resistance,and comorbidities such as diabetes and cardiovascular disease.It triggers hypovolemic stress,leading to myocardial stunning,cerebral ischemia,and organ dysfunction.Non-modifiable risk factors,including age and preexisting conditions,exacerbate susceptibility,while modifiable elements such as high interdialytic weight gain and improper dialysis prescriptions worsen outcomes.In this review,we aim to conduct an in-depth analysis of IDH,exploring its clinical relevance,underlying mechanisms,risk factors,and management approaches.Additionally,we advocate for a standardised definition and propose a strategic framework to guide future research efforts.Effective management requires individualised approaches,including optimised UFR,cooled dialysate,and nutritional adjustments,alongside emerging technologies like bio-impedance spectroscopy and artificial intelligence for real-time risk prediction.A multidisciplinary team approach,incorporating nephrologists,nurses,and dietitians,is essential for holistic patient care.Future research and technological advancements hold promise for mitigating IDH’s clinical and systemic impact,ultimately improving patient outcomes and survival.
基金Project supported by Youth Project of Science and Technology Research Program of Chongqing Education Commission of China (Grant No. KJQN202404522)。
文摘Kinesin is an archetypal microtubule-based molecular motor that can generate force to transport cargo in cells. The load dependence of the detachment rate is an important factor of the kinesin motor, the determination of which is critically related to the chemomechanical coupling mechanism of the motor. Here, we use three models for the load dependence of the detachment rate of the kinesin motor to study theoretically and numerically the maximal force generated and microtubuleattachment duration of the motor. By comparing the theoretical and numerical results with the available experimental data,we show that only one model can explain well the available experimental data, indicating that only this model can be applicable to the kinesin motor.
基金sponsored by National Natural Science Foundation of China(52077137).
文摘Under the“dual carbon”goals,this paper constructs an optimization model of the comprehensive energy system in the park.A stepwise carbon excess rate mechanism and an electric vehicle coupling strategy are proposed:A carbon quota trading system is established based on the baseline method,and the stepwise function is adopted to quantify the cost of excess carbon emissions;Introduce the price demand response and the two-way interaction mechanism of electric Vehicle vehicle-to-grid(V2G)to enhance the flexible regulation ability.Aiming at the uncertainty of wind and solar output,a typical scene set is generated by combining Latin hypercube sampling with the scene reduction method.The goal is to minimize the operating cost and maximize the consumption of renewable energy,and it is solved through the CPLEX solver in the MATLAB platform.Through simulation verification of the proposed models and methods in various scenarios,the simulation results show that under the coupling of the carbon excess rate trading mechanism,the demand response mechanism,and the vehicle-to-grid interaction of electric vehicles,the total daily operating cost of the system decreases by 25.3%,reduce the dual pressure of energy consumption costs and the economic environment,and achieve the coordinated optimization of economic and ecological benefits.
文摘Modeling HIV/AIDS progression is critical for understanding disease dynamics and improving patient care. This study compares the Exponential and Weibull survival models, focusing on their ability to capture state-specific failure rates in HIV/AIDS progression. While the Exponential model offers simplicity with a constant hazard rate, it often fails to accommodate the complexities of dynamic disease progression. In contrast, the Weibull model provides flexibility by allowing hazard rates to vary over time. Both models are evaluated within the frameworks of the Cox Proportional Hazards (Cox PH) and Accelerated Failure Time (AFT) models, incorporating critical covariates such as age, gender, CD4 count, and ART status. Statistical evaluation metrics, including Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), log-likelihood, and Pseudo-R2, were employed to assess model performance across diverse patient subgroups. Results indicate that the Weibull model consistently outperforms the Exponential model in dynamic scenarios, such as younger patients and those with co-infections, while maintaining robustness in stable contexts. This study highlights the trade-off between flexibility and simplicity in survival modeling, advocating for tailored model selection to balance interpretability and predictive accuracy. These findings provide valuable insights for optimizing HIV/AIDS management strategies and advancing survival analysis methodologies.
基金supported by the National Natural Science Foundation of China(Grant No.U2340221)the National Key R&D Programof China(Grant No.2022YFC3202602)+1 种基金the NaturalScience Foundation of Jiangsu Province(Grant No.BK20230036)the 111 Project(Grant No.B17015)。
文摘Rational allocation of water flow energy in river networks is essential to addressing water-related issues in river network areas.However,current methods of calculating the spatiotemporal distribution of flow energy in river networks lack precision and efficiency.This paper introduces a novel hydrodynamic representation,the energy flow rate,defined as the product of the flow rate and kinetic energy head,to quantify the kinetic energy stored and transported in river networks.A linear equation system for the energy flow rate in a river network has been theoretically derived,enabling rapid calculations under steady flow conditions.A simplified equation is proposed to describe the exponential decay of the energy flow rate,accompanied by potential energy conversion.The coefficients in the linear equation system are determined using control equations at flow confluence and diversion nodes.This study provides foundational insights that can be used to develop new hydrodynamic modeling strategies to regulate water flow energy and achieve coordinated management of water-related issues in river networks.
基金the support of the National Natural Science Foundation of China(Grant Nos.42030714,42177138 and 41907239).
文摘Investigation of thermal effects on the strain rate-dependent properties of compacted bentonite is crucial for the long-term safety assessment of deep geological repository for disposal of high-level radioactive waste.In the present work,cylindrical GMZ01 bentonite specimens were compacted with suction-controlled by the vapor equilibrium technique.Then,a series of temperature-and suction-controlled stepwise constant rate of strain(CRS)tests was performed and the rate-dependent compressibility behavior of the highly compacted GMZ01 bentonite was investigated.The plastic compressibility parameterλ,the elastic compressibility parameterκ,the yield stress p0,as well as the viscous parameterαwere determined.Results indicate thatλ,κandαdecrease and p0 increases as suction increases.Upon heating,parametersλ,αand p0 decrease.It is also found that p0 increases linearly with increasing CRS in a double-logarithm coordinate.Based on the experimental results,a viscosity parameterα(s,T)was fitted to capture the effects of suction s and temperature T on the relationship between yield stress and strain rate.Then,an elastic-thermo-viscoplastic model for unsaturated soils was developed to describe the thermal effects on the rate-dependent behavior of highly compacted GMZ01 bentonite.Validation showed that the calculated results agreed well to the measured ones.
基金supported by the National Key Research and Development Program of China(No.2020YFA0607800)the National Natural Science Foundation of China(Nos.42022039 and 42130606)Beijing National Laboratory for Molecular Sciences(No.BNLMS-CXXM-202011),the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.Y2021013).
文摘Unsaturated alcohols are a class of Biogenic volatile organic compounds(BVOCs)emitted in large quantities by plants when damaged or under adverse environmental conditions,and studies on their atmospheric degradation at night are still lacking.We used chamber experiments to study the gas-phase reactions of three unsaturated alcohols,E-2-penten-1-ol,Z-2-hexen-1-ol and Z-3-hepten-1-ol,with NO_(3)radicals(NO_(3)•)during the night.The rate constants of these reactions were(11.7±1.76)×10^(−13),(8.55±1.33)×10^(−13)and(6.08±0.47)×10^(−13)cm^(3)/(molecule·s)at 298K and 760 Torr,respectively.In contrast,the reaction rate of similar substances with ozone was about 10^(−18)cm^(3)/(molecule·s),which indicates that the reaction with NO_(3)•is themain oxidation pathway for unsaturated alcohols at night.Small molecule aldehydes and ketones were the main gas-phase organic products of the reaction of three aldehydes and ketones with NO_(3)•,and the total small molecule aldehydes and ketones yields can reach between 45%-60%.They mainly originate from the breakage of alkoxy radicals,and different breakage sites determine different product distributions.In addition,the SOA yields of the three unsaturated alcohols with NO_(3)•were 7.1%±1.0%,12.5%±1.9%and 30.0%±4.5%,respectively,whichweremuch higher than those of similarly structured substances with O_(3)or OH radicals(•OH).The results of high-resolution mass spectrometry shows that the main components of Secondary organic aerosol(SOA)of the three unsaturated alcohols are dimeric compounds containing several nitrate groups,which are formed through the polymerization of oxyalkyl radicals.
基金The authors are grateful for the Beijing Natural Science Foundation(Grant No.8242017)。
文摘This study presents an in-depth investigation into the shear strength characteristics of unsaturated soils,focusing on the influenceof shear rate and initial water saturation(S_(r0)).Utilizing the drained-vented(DV)triaxial test method,the present study investigated the shear strength behavior of silty clay under various shear rates and water saturation levels,and compared the outcomes with traditional suction-controlled(SC)and constant water content(CW)tests.The findingshighlight the pivotal role of excess pore water pressure dissipation during shearing,which significantlyaffects the shear strength of both saturated and unsaturated soils.Notably,for soils with high initial water saturation,a decrease in shear strength is observed with an increase in shear rate,which is attributed to the rise in pore water pressure.Conversely,for soils with low initial water saturation,the shear rate exhibits minimal impact on shear strength due to negligible water drainage.The research delineates the optimal shear rates for DV tests based on the initial water saturation:a slower rate of 0.0028 mm/min for samples with high water saturation(S_(r0)>66%)and a faster rate of 0.8 mm/min for samples with low water saturation(S_(r0)≤66%).A novel testing methodology for determining unsaturated soil shear strength under DV conditions is introduced,streamlining the measurement process and significantly reducing testing time.This method not only promises substantial cost savings but also aligns closely with natural engineering conditions,offering valuable guidance for geotechnical applications.
基金financially supported by the National Natural Science Foundation of China (22378424,22127812)the Science Foundation of China University of Petroleum Beijing,China (2462023BJRC017)。
文摘CO_(2) hydrate-based sequestration in submarine sediments shows great potential for carbon emission reduction.Considering the proportional relationship of CO_(2) and water for hydrates formation,their existing ratio largely determines the CO_(2) sequestration density and phase state.Here,this work focuses on determining the optimal ratio of CO_(2) to seawater in sediments simulated with 20-40 mesh(0.42-0.85 mm) quartz sand,in order to maximize CO_(2) hydrate conversion in sediments.The results show that the conversion rate of CO_(2) hydrate increases with the initial water saturation,reaching 15.3%at 80% initial water saturation.The optimal CO_(2) hydrate formation occurs at 30% initial water saturation,with the corresponding CO_(2) storage density in hydrate form of 33.09 kg·m^(-3) and the hydrate saturation of 22.3%.However,CO_(2) hydrate conversion rate is <10%,which implies that most CO2 still exists in liquid state,despite the presence of free water.The total CO_(2) sequestration density is negatively correlated with the initial water saturation,and at 10% initial water saturation,398.73 kg·m^(-3) of CO_(2) is sequestered,of which only 18.02 kg·m^(-3) is hydrated.Additionally,the lower initial water saturation corresponds to the shorter time to achieve t_(90) of CO_(2) consumption,and the water conversion rate to hydrate reaches 90% at 10% initial water saturation.In summary,adjusting the volume ratio of liquid CO_(2) to seawater can effectively increase the sequestration amount of CO_(2) hydrates,but methods to increase CO_(2) conversion to hydrate still need to be established.