Abstract Based on the Reynolds-averaged Navier--Stokes (RANS) equations and structured grid technology, the calibration and validation of Y-Reo transition model is preformed with fifth-order weighted compact nonline...Abstract Based on the Reynolds-averaged Navier--Stokes (RANS) equations and structured grid technology, the calibration and validation of Y-Reo transition model is preformed with fifth-order weighted compact nonlinear scheme (WCNS), and the purpose of the present work is to improve the numerical accuracy for aerodynamic characteristics simulation of low-speed flow with transition model on the basis of high-order numerical method study. Firstly, the empirical correlation functions involved in the Y-Reo transition model are modified and calibrated with experimental data of turbulent flat plates. Then, the grid convergence is studied on NLR-7301 two-element airfoil with the modified empirical correlation. At last, the modified empirical correlation is validated with NLR-7301 two-element airfoil and high-lift trapezoidal wing from transition location, velocity pro- file in boundary layer, surface pressure coefficient and aerodynamic characteristics. The numerical results illustrate that the numerical accuracy of transition length and skin friction behind transition location are improved with modified empirical correlation function, and obviously increases the numerical accuracy of aerodynamic characteristics prediction for typical transport configurations in low-speed range.展开更多
To design a propeller for ship power plant,the interaction between ship hull and propeller must be taken into account.The main concern is to apply the wake effect of ship stern on the propeller performance.In this pap...To design a propeller for ship power plant,the interaction between ship hull and propeller must be taken into account.The main concern is to apply the wake effect of ship stern on the propeller performance.In this paper,a coupled BEM(Boundary Element Method)/RANS(Renolds-Averaged Navier−Stokes)solver is used to simulate propeller behind the hull in the self-propulsion test.The motivation of this work is to develop a practical tool to design marine propulsion system without suffering long computational time.An unsteady boundary element method which is also known as panel method is chosen to estimate the propeller forces.Propeller wakes are treated using a time marching wake alignment method.Also,a RANS code coupled with VoF equation is developed to consider the ship motions and wake field effects in the problem.A coupling algorithm is developed to interchange ship wake field to the potential flow solver and propeller thrust to the RANS code.Based on the difference between hull resistance and the propeller thrust,a PI controller is developed to compute the propeller RPM in every time step.Verification of the solver is carried out using the towing tank test report of a 50 m oceanography research vessel.Wake factor and trust deduction coefficient are estimated numerically.Also,the wake rollup pattern of the propeller in open water is compared with the propeller in real wake field.展开更多
The present study aims at the investigation of the effects of turbulence-chemistry interaction on combus- tion instabilities using a probability density function (PDF) method. The instantaneous quantities in the flo...The present study aims at the investigation of the effects of turbulence-chemistry interaction on combus- tion instabilities using a probability density function (PDF) method. The instantaneous quantities in the flow field were decomposed into the Favre-averaged variables and the stochastic fluctuations, which were calculated by unsteady Reynolds averaged Navier-Stokes (U-RANS) equations and the PDF model, respectively. A joint fluctuating velocity- frequency-composition PDF was used. The governing equa- tions are solved by a consistent hybrid finite volume/Monte- Carlo algorithm on triangular unstructured meshes. A non- reacting flow behind a triangular-shaped bluff body flame stabilizer in a rectilinear combustor was simulated by the present method. The results demonstrate the capability of the present method to capture the large-scale coherent struc- tures. The triple decomposition was performed, by divid- ing the coherent Favre-averaged velocity into time-averaged value and periodical coherent part, to analyze the coherent and incoherent contributions to Reynolds stresses. A sim- ple modification to the coefficients in the turbulent frequency model will help to improve the simulation results. Unsteady flow fields were depicted by streamlines and vorticity con- tours. Moreover, the association between turbulence produc- tion and vorticity saddle points is illustrated.展开更多
基金supported by the National Basic Research Program of China(No.2014CB744803)
文摘Abstract Based on the Reynolds-averaged Navier--Stokes (RANS) equations and structured grid technology, the calibration and validation of Y-Reo transition model is preformed with fifth-order weighted compact nonlinear scheme (WCNS), and the purpose of the present work is to improve the numerical accuracy for aerodynamic characteristics simulation of low-speed flow with transition model on the basis of high-order numerical method study. Firstly, the empirical correlation functions involved in the Y-Reo transition model are modified and calibrated with experimental data of turbulent flat plates. Then, the grid convergence is studied on NLR-7301 two-element airfoil with the modified empirical correlation. At last, the modified empirical correlation is validated with NLR-7301 two-element airfoil and high-lift trapezoidal wing from transition location, velocity pro- file in boundary layer, surface pressure coefficient and aerodynamic characteristics. The numerical results illustrate that the numerical accuracy of transition length and skin friction behind transition location are improved with modified empirical correlation function, and obviously increases the numerical accuracy of aerodynamic characteristics prediction for typical transport configurations in low-speed range.
文摘To design a propeller for ship power plant,the interaction between ship hull and propeller must be taken into account.The main concern is to apply the wake effect of ship stern on the propeller performance.In this paper,a coupled BEM(Boundary Element Method)/RANS(Renolds-Averaged Navier−Stokes)solver is used to simulate propeller behind the hull in the self-propulsion test.The motivation of this work is to develop a practical tool to design marine propulsion system without suffering long computational time.An unsteady boundary element method which is also known as panel method is chosen to estimate the propeller forces.Propeller wakes are treated using a time marching wake alignment method.Also,a RANS code coupled with VoF equation is developed to consider the ship motions and wake field effects in the problem.A coupling algorithm is developed to interchange ship wake field to the potential flow solver and propeller thrust to the RANS code.Based on the difference between hull resistance and the propeller thrust,a PI controller is developed to compute the propeller RPM in every time step.Verification of the solver is carried out using the towing tank test report of a 50 m oceanography research vessel.Wake factor and trust deduction coefficient are estimated numerically.Also,the wake rollup pattern of the propeller in open water is compared with the propeller in real wake field.
基金supported by the National Natural Science Foundation of China (50936005)the Fundamental Research Fundsfor the Central Universities (WK2090130008,WK2090130011)
文摘The present study aims at the investigation of the effects of turbulence-chemistry interaction on combus- tion instabilities using a probability density function (PDF) method. The instantaneous quantities in the flow field were decomposed into the Favre-averaged variables and the stochastic fluctuations, which were calculated by unsteady Reynolds averaged Navier-Stokes (U-RANS) equations and the PDF model, respectively. A joint fluctuating velocity- frequency-composition PDF was used. The governing equa- tions are solved by a consistent hybrid finite volume/Monte- Carlo algorithm on triangular unstructured meshes. A non- reacting flow behind a triangular-shaped bluff body flame stabilizer in a rectilinear combustor was simulated by the present method. The results demonstrate the capability of the present method to capture the large-scale coherent struc- tures. The triple decomposition was performed, by divid- ing the coherent Favre-averaged velocity into time-averaged value and periodical coherent part, to analyze the coherent and incoherent contributions to Reynolds stresses. A sim- ple modification to the coefficients in the turbulent frequency model will help to improve the simulation results. Unsteady flow fields were depicted by streamlines and vorticity con- tours. Moreover, the association between turbulence produc- tion and vorticity saddle points is illustrated.