Multiple principal element alloys(MPEAs),also known as high-entropy alloys,have attracted significant attention because of their exceptional mechanical and thermal properties.A critical factor influencing these proper...Multiple principal element alloys(MPEAs),also known as high-entropy alloys,have attracted significant attention because of their exceptional mechanical and thermal properties.A critical factor influencing these properties is suggested to be the presence of chemical short-range order(SRO),characterized by specific atomic arrangements occurring more frequently than in a random distribution.Despite extensive efforts to elucidate SRO,particularly in face-centered cubic(fcc)3d transition metal-based MPEAs,several key aspects remain under debate:the conditions under which SRO forms,the reliability of characterization methods for detecting SRO,and its quantitative impact on mechanical performance.This review summarizes the challenges and unresolved issues in this emerging field,drawing comparisons with well-established research on SRO in binary alloys over the past few decades.Through this cross-system comparison,we aim to provide new insights into SRO from a comprehensive perspective.展开更多
The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,re...The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,resulting in point cloud loss or reduced accuracy.To address this issue,unlike the pixel modulation method of projectors,we utilize the characteristics of color projectors where the intensity of the three-channel LED can be controlled independently.We propose a method for separating the projector's three-channel light intensity,combined with a color camera,to achieve single exposure and multi-intensity image acquisition.Further,the crosstalk coefficient is applied to predict the three-channel reflectance of the measured object.By integrating clustering and channel mapping,we establish a pixel-level mapping model between the projector's three-channel current and the camera's three-channel image intensity,which realizes the optimal projection current prediction and the high dynamic range(HDR)image acquisition.The proposed method allows for high-precision three-dimensional(3D)data acquisition of HDR scenes with a single exposure.The effectiveness of this method has been validated through experiments with standard planes and standard steps,showing a significant reduction in mean absolute error(44.6%)compared to existing singleexposure HDR methods.Additionally,the number of images required for acquisition is significantly reduced(by 70.8%)compared to multi-exposure fusion methods.This proposed method has great potential in various FPP-related fields.展开更多
Resonant linear and nonlinear properties in terahertz range of 2D materials graphene and silicene placed into a bias magnetic field are investigated theoretically on the base of the quasi-classical kinetic theory. Whe...Resonant linear and nonlinear properties in terahertz range of 2D materials graphene and silicene placed into a bias magnetic field are investigated theoretically on the base of the quasi-classical kinetic theory. When the electromagnetic frequency is close to the cyclotron one, the linear conductivity increases two orders. Under the resonant frequencies nonlinearity becomes essential at low magnitudes of terahertz electric fields. In absence of a bias magnetic field the nonlinear dependences of the surface electric currents on terahertz electric field are practically the same simulated from kinetics and electron hydrodynamics with nonzero “kinetic” electron effective mass. Graphene possesses higher values of nonlinearity of the resonant conductivity, whereas in absence of a bias magnetic field, the electron nonlinearity is higher in silicene.展开更多
Vibration detection using sensors with both wide working frequency range,good sensitivity,and other good performances is a topic of great interest in fields such as inertial navigation,deep-sea fishing boat engines co...Vibration detection using sensors with both wide working frequency range,good sensitivity,and other good performances is a topic of great interest in fields such as inertial navigation,deep-sea fishing boat engines condition monitoring,seismic monitoring,attitude,and heading reference system,etc.This paper investigates two 6H-SIC MEMS diaphragms,one triangular and the other square,used in a fiber optic Fabry–Perot(FP)accelerometer in an experimental scenario.The triangular chip shows a wide working frequency range of 630 Hz–5300 Hz,a natural frequency of 44.3 k Hz,and a mechanical sensitivity of 0.154 nm/g.An optimal structure of the square chip used in a probe such as a fiber optic FP accelerometer also shows a wide working frequency range of 120 Hz–2300 Hz;a good sensitivity of 31.5 m V/g,a resonance frequency of7873 Hz,an accuracy of 0.96%F.S.,a frequency measurement error of 1.15%,and an excellent linearity of 0.9995.展开更多
Ammonium level in body fluids serves as one of the critical biomarkers for healthcare,especially those relative to liver diseases.The continuous and real-time monitoring in both invasive and noninvasive manners is hig...Ammonium level in body fluids serves as one of the critical biomarkers for healthcare,especially those relative to liver diseases.The continuous and real-time monitoring in both invasive and noninvasive manners is highly desired,while the ammonium concentrations vary largely in different body fluids.Besides,the sensing reliability based on ion-selective biosensors can be significantly interfered by potassium ions.To tackle these challenges,a flexible and biocompatible sensing patch for wireless ammonium level sensing was reported with an ultrawide linear range for universal body fluids including blood,tears,saliva,sweat and urine.The as-prepared biocompatible sensors deliver a reliable sensitivity of 58.7 mV decade-1 in the range of 1-100 mM and a desirable selectivity coefficient of 0.11 in the interference of potassium ions,attributed to the cross-calibration within the sensors array.The sensor’s biocompatibility was validated by the cell growth on the sensor surface(>80%),hemolysis rates(<5%),negligible cellular inflammatory responses and weight changes of the mice with implanted sensors.Such biocompatible sensors with ultrawide linear range and desirable selectivity open up new possibility of highly compatible biomarker analysis via different body fluids in versatile approaches.展开更多
Anthropogenic climate change is altering species distributions globally.While species distributions are expected to shift to higher latitudes and elevations under global warming,empirical evidence on distribution shif...Anthropogenic climate change is altering species distributions globally.While species distributions are expected to shift to higher latitudes and elevations under global warming,empirical evidence on distribution shifts is mixed,and factors mediating the direction and magnitude of range shifts remain unclear.Using a dataset of 132new provincial records for 96 resident bird species from 2000 to 2023,we measured geographic distance,latitudinal shift,and temperature shift from each new record to the historical range for each species to test for poleward shifts.We assessed taxonomic variation in the magnitude of range shifts and used phylogenetic generalized linear mixed models to quantify relationships between species traits and the extent of range shifts.Our results revealed that new records occurred at a mean geographic distance of 420 km from historical ranges,with mean latitudinal shifts of+1.68°(poleward)and temperature shifts of-1.33℃(toward colder climates).The magnitude of geographic range shifts was strongly constrained by phylogenetic relatedness.Habitat breadth,habitat openness,and centroid latitude of historical ranges emerged as significant predictors of range shifts.Our results suggest that resident bird species'geographic ranges in China are shifting poleward,but the magnitude of these shifts is non-random across lineages.Species with broader habitat preferences and those from warmer climates are more likely to shift farther from their historical ranges and toward higher latitudes.This study emphasizes taxonomic variation in species range shifts and highlights the need for species-and site-specific conservation strategies under global warming.展开更多
Two-dimensional(2D)organic-inorganic hybrid perovskites(OIHPs)have been developed as promising candidates for photodetection,owing to their excellent semiconducting features and structural tunability.However,as an imp...Two-dimensional(2D)organic-inorganic hybrid perovskites(OIHPs)have been developed as promising candidates for photodetection,owing to their excellent semiconducting features and structural tunability.However,as an important parameter for photodetection,the photoresponsive range of 2D OIHPs is usually modulated by finite metal-halide combinations,constraining their further development.The emerging aromatic amine-based alternating-cations-interlayered(A-ACI)hybrid perovskites that exhibit excellent charge transport and additional interlayered structural designability,provide an extra solution for achieving ideal photoresponsive range.Herein,for the first time,the photoresponsive range is successfully broadened in A-ACI hybrid perovskites(NMA)_(4)(FA)_(2)Pb_(3)Br_(12)(2)remolding from(NMA)_(4)(MA)_(2)Pb_(3)Br_(12)(1)(NMA=N-methylbenzylaminium,FA=formamidinium and MA=methylammonium).Particularly,1 and 2adopt an unprecedented configuration that NMA and MA/FA are alternately arranged in the interlayer in a 4:2 manner.Importantly,2 exhibits a narrower bandgap than 1,which can be ascribed to the lowlying conduct band composed of intercalation FAπ*orbitals.Meanwhile,2 possesses a shorter interlayer distance and flatter inorganic skeleton,synergistically facilitating the wider photo-absorption range and further endowing a broadening photoresponsive range(70 nm).This research not only enriches the perovskite family but also provides insights into structure-property relationships.展开更多
Geodetic observations over the past several decades identify the Tien Shan as a prominent and active intracontinental mountain belt,characterized by a meridional shortening rate of up to 20 mm/a.The region has experie...Geodetic observations over the past several decades identify the Tien Shan as a prominent and active intracontinental mountain belt,characterized by a meridional shortening rate of up to 20 mm/a.The region has experienced significant seismic events,particularly along its northern boundary,highlighting the recurrent seismic activity in the Kyrgyz Republic.The Issyk-Ata fault,stretching 120 km from west to east in the northern Tien Shan,bounds from the north a young,growing anticline demarcating the foothills of the Kyrgyz Range and the Chui depression.This region is susceptible to strong earthquakes,posing a significant threat to the Chui region and Bishkek,the capital city with over a million residents.The youngest fault in the area is the Issyk-Ata fault,traversing the southern part of Bishkek,where modern construction has obscured its features.This study integrates remote sensing,detailed fieldwork,and paleoseismological investigations to map and analyze surface ruptures,quantify vertical displacements,and assess seismic hazards along the Issyk-Ata fault.Using optically stimulated luminescence and radiocarbon dating,we determined ages for documented paleoseismic events,placing two ancient earthquakes in the Holocene.Magnitude estimates suggest seismic events with magnitudes ranging from 6.6 to 7.1.In the Dzhal area,geological and geomorphological analysis yielded a longterm fault-slip rate of 1.15 mm/a.The Issyk-Ata fault shows variable rupture behavior,with distinct segments demonstrating different seismic characteristics and histories of activity.This variability necessitates comprehensive seismic hazard modeling to better understand and mitigate potential risks in the region.展开更多
High-voltage dual-ion batteries(DIBs)face significant challenges,including graphite cathode degradation,cathode-electrolyte interphase(CEI)instability,and the thermodynamic instability of conventional carbonate-based ...High-voltage dual-ion batteries(DIBs)face significant challenges,including graphite cathode degradation,cathode-electrolyte interphase(CEI)instability,and the thermodynamic instability of conventional carbonate-based electrolytes,particularly at extreme temperatures.In this study,we develop a stable electrolyte incorporating lithium difluorophosphate(LiDFP)as an additive to enhance the electrochemical performance of DIBs over a wide temperature range.LiDFP preferentially decomposes to form a rapid anion-transporting,mechanically robust CEI layer on graphite,which provides better protection by suppressing graphite's volume expansion,preventing electrolyte oxidative decomposition,and enhancing reaction kinetics.As a result,Li||graphite half cells using LiDFP electrolyte exhibit outstanding rate performance(90.8% capacity retention at 30 C)and excellent cycle stability(82.2% capacity retention after 5000 cycles)at room temperature.Moreover,graphite||graphite full cells with LiDFP electrolyte demonstrate stable discharge capacity across a temperature range of-20 to 40℃,expanding the potential applications of LiDFP.This work establishes a novel strategy for optimizing the interphase through electrolyte design,paving the way for all-climate DIBs with improved performance and stability.展开更多
The high-speed reentry vehicle operates across a broad range of speeds and spatial domains,where optimal aerodynamic shapes for different speeds are contradictory.This makes it challenging for a single-Mach optimizati...The high-speed reentry vehicle operates across a broad range of speeds and spatial domains,where optimal aerodynamic shapes for different speeds are contradictory.This makes it challenging for a single-Mach optimization design to meet aerodynamic performance requirements throughout the vehicle’s flight envelope.Additionally,the strong coupling between aerodynamics and control adds complexity,as fluctuations in aerodynamic parameters due to speed variations complicate control system design.To address these challenges,this study proposes an aerodynamic/control coupling optimization design approach.This method,based on aerodynamic optimization principles,incorporates active control technology,treating aerodynamic layout and control system design as primary components during the conceptual design phase.By integrating the design and evaluation of aerodynamics and control,the approach aims to reduce design iterations and enhance overall flight performance.The comprehensive design of the rotary reentry vehicle,using this optimization strategy,effectively balances performance at supersonic and hypersonic speeds.The results show that the integrated design model meets aerodynamic and control performance requirements over a broader range of Mach numbers,preventing performance degradation due to deviations from the design Mach number,and providing a practical solution for high-speed reentry vehicle design.展开更多
Large dynamic range and ultra-wideband receiving abilities are significant for many receivers. With these abilities, receivers can obtain signals with different power in ultra-wideband frequency space without informat...Large dynamic range and ultra-wideband receiving abilities are significant for many receivers. With these abilities, receivers can obtain signals with different power in ultra-wideband frequency space without information loss. However, conventional receiving scheme is hard to have large dynamic range and ultra-wideband receiving simultaneously because of the analog-to-digital converter(ADC) dynamic range and sample rate limitations. In this paper, based on the modulated sampling and unlimited sampling, a novel receiving scheme is proposed to achieve large dynamic range and ultra-wideband receiving. Focusing on the single carrier signals, the proposed scheme only uses a single self-rest ADC(SR-ADC) with low sample rate, and it achieves large dynamic range and ultra-wideband receiving simultaneously. Two receiving scenarios are considered, and they are cooperative strong signal receiving and non-cooperative strong/weak signals receiving. In the cooperative receiving scenario, an improved fast recovery method is proposed to obtain the modulated sampling output. In the non-cooperative receiving scenario, the strong and weak signals with different carrier frequencies are considered, and the signal processing method can recover and estimate each signal. Simulation results show that the proposed scheme can realize large dynamic range and ultra-wideband receiving simultaneously when the input signal-to-noise(SNR) ratio is high.展开更多
This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with...This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.展开更多
Grating fringe projection 3D measurement techniques are extensively applied in various fields.However,in high dynamic range scenarios with significant surface reflectivity variations,uneven greyscale distribution may ...Grating fringe projection 3D measurement techniques are extensively applied in various fields.However,in high dynamic range scenarios with significant surface reflectivity variations,uneven greyscale distribution may lead to phase errors and poor reconstruction results.To address this problem,an adaptive fringe projection method is introduced.The method involves projecting two sets of dark and light fringes onto the object,enabling the full-field projection intensity map to be generated adaptively based on greyscale analysis.First,dark fringes are projected onto the object to extend exposure time as long as possible without causing overexposure in the image.Subsequently,bright fringes are projected under the same exposure settings to detect overexposed pixels,and the greyscale distribution of these overexposed points from the previous dark fringe projection is analyzed to calculate the corresponding projection intensities.Finally,absolute phase information from orthogonal fringes is used for coordinate matching,enabling the generation of adaptive projection fringe patterns.Experiments on various high dynamic range objects show that compared to conventional fringe projection binocular reconstruction method,the proposed algorithm achieves complete reconstruction of high dynamic range surfaces and shows robust performance against phase calculation errors caused by overexposure and low modulation.展开更多
Organic afterglow materials hold significant potential for applications in information storage,anticounterfeiting,and biological imaging.However,studies on afterglow materials capable of ultra-wide range excitation an...Organic afterglow materials hold significant potential for applications in information storage,anticounterfeiting,and biological imaging.However,studies on afterglow materials capable of ultra-wide range excitation and emission simultaneously are limited.To enhance the practicality of strong emission single-component organic afterglow systems,overcoming the constraints of crystalline or other rigid environments is essential.We have developed solid-state dual-persistent thermally activated delayed fluorescence(TADF)and room temperature phosphorescence(RTP)emissions spanning yellow to red under visible light excitation,utilizing a single-molecule terminal group regulation strategy.The RTP lifetime extends from 4.19 ms to 399.70 ms.These afterglow materials exhibit an ultra-wide absorption range from 200 nm to 800 nm,rendering them capable of being excited by both sunlight simulator and nearinfrared radiation.The upconversion phosphorescence lifetime under 808 nm excitation reaches 13.72μs.The double persistent emission of these compounds is temperature-sensitive.Moreover,following grinding or heat treatment,accompanied by extensive afterglow color conversion due to planarization of excited state conformations and additional efficient kRIsc generation.In addition,the amorphous state post melt annealing facilitates the afterglow transition from yellow to green.Crucially,these compounds also maintain stable ultra-long afterglow emission in aqueous and acid-base environments.Overall,we have successfully developed a series of single-component intelligent luminescent materials that demonstrate significant benefits,including dual TADF and RTP emissions,adjustable afterglow lifetimes,a broad range of excitation and emission wavelengths,multi-modal luminescence not restricted to crystalline states,and robust afterglow performance in challenging environments,setting the stage for the practical deployment of afterglow materials in engineering applications,the upconversion afterglow emission also holds promising potential for applications in the field of biological imaging.展开更多
The crossover between short-range and long-range(LR)universal behaviors remains a central theme in the physics of LR interacting systems.The competition between LR coupling and the Berezinskii-Kosterlitz-Thouless mech...The crossover between short-range and long-range(LR)universal behaviors remains a central theme in the physics of LR interacting systems.The competition between LR coupling and the Berezinskii-Kosterlitz-Thouless mechanism makes the problem more subtle and less understood in the two-dimensional(2D)XY model,a cornerstone for investigating low-dimensional phenomena and their implications in quantum computation.We study the 2D XY model with algebraically decaying interaction~1/r^(2+σ).Utilizing an advanced update strategy,we conduct LR Monte Carlo simulations of the model up to a linear size of L=8192.Our results demonstrate continuous phase transitions into a ferromagnetic phase forσ<2,which exhibit the simultaneous emergence of a long-ranged order and a power-law decaying correlation function due to the Goldstone mode.Furthermore,we fnd logarithmic scaling behaviors in the low-temperature phase atσ=2.The observed scaling behaviors in the low-temperature phase forσ≤2 agree with our theoretical analysis.Our fndings request further theoretical understanding and can be of practical application in cutting-edge experiments like Rydberg atom arrays.展开更多
Common anode materials in aqueous alkaline electrolytes,such as cadmium,metal hydrides and zinc,usually suffer from remarkable biotoxicity,high cost,and serious side reactions.To overcome these problems,we develop a c...Common anode materials in aqueous alkaline electrolytes,such as cadmium,metal hydrides and zinc,usually suffer from remarkable biotoxicity,high cost,and serious side reactions.To overcome these problems,we develop a conjugated porous polymer(CPP)in-situ grown on reduced graphene oxide(rGO)and Ketjen black(KB),noted as C_(4)N/rGO and C_(4)N/KB respectively,as the alternative anodes.The results show that C_(4)N/rGO electrode delivers a low redox potential(−0.905 V vs.Ag/AgCl),high specific capacity(268.8 mAh g^(-1) at 0.2 A g^(-1)),ultra-stable and fast sodium ion storage behavior(216 mAh g^(-1) at 20 A g^(-1))in 2 M NaOH electrolyte.The assembled C_(4)N/rGO//Ni(OH)_(2) full battery can cycle stably more than 38,000 cycles.Furthermore,by adding a small amount of antifreeze additive dimethyl sulfoxide(DMSO)to adjust the hydrogen bonding network,the low-temperature performance of the electrolyte(0.1 DMSO/2 M NaOH)is significantly improved while hydrogen evolution is inhibited.Consequently,the C_(4)N/rGO//Ni(OH)_(2) full cell exhibits an energy density of 147.3 Wh Kg^(-1) and ultra-high cycling stability over a wide temperature range from−70 to 45℃.This work provides an ultra-stable high-capacity CPPbased anode and antifreeze electrolyte for aqueous alkaline batteries and will facilitate their practical applications under extreme conditions.展开更多
Water hammer diagnostics is an important fracturing diagnosis technique to evaluate fracture locations and other downhole events in fracturing. The evaluation results are obtained by analyzing shut-in water hammer pre...Water hammer diagnostics is an important fracturing diagnosis technique to evaluate fracture locations and other downhole events in fracturing. The evaluation results are obtained by analyzing shut-in water hammer pressure signal. The field-sampled water hammer signal is often disturbed by noise interference. Noise interference exists in various pumping stages during water hammer diagnostics, with significantly different frequency range and energy distribution. Clarifying the differences in frequency range and energy distribution between effective water hammer signals and noise is the basis of setting specific filtering parameters, including filtering frequency range and energy thresholds. Filtering specifically could separate the effective signal and noise, which is the key to ensuring the accuracy of water hammer diagnosis. As an emerging technique, there is a lack of research on the frequency range and energy distribution of effective signals in water hammer diagnostics. In this paper, the frequency range and energy distribution characteristics of field-sampled water hammer signals were clarified quantitatively and qualitatively for the first time by a newly proposed comprehensive water hammer segmentation-energy analysis method. The water hammer signals were preprocessed and divided into three segments, including pre-shut-in, water hammer oscillation, and leak-off segment. Then, the three segments were analyzed by energy analysis and correlation analysis. The results indicated that, one aspect, the frequency range of water hammer oscillation spans from 0 to 0.65 Hz, considered as effective water hammer signal. The pre-shut-in and leak-off segment ranges from 0 to 0.35 Hz and 0-0.2 Hz respectively. Meanwhile, odd harmonics were manifested in water hammer oscillation segment, with the harmonic frequencies ranging approximately from 0.07 to 0.75 Hz. Whereas integer harmonics were observed in pre-shut-in segment, ranging from 6 to 40 Hz. The other aspect, the energy distribution of water hammer signals was analyzed in different frequency ranges. In 0-1 Hz, an exponential decay was observed in all three segments. In 1-100 Hz, a periodical energy distribution was observed in pre-shut-in segment, an exponential decay was observed in water hammer oscillation, and an even energy distribution was observed in leak-off segment. In 100-500 Hz, an even energy distribution was observed in those three segments, yet the highest magnitude was noted in leak-off segment. In this study, the effective frequency range and energy distribution characteristics of the field-sampled water hammer signals in different segments were sufficiently elucidated quantitatively and qualitatively for the first time, laying the groundwork for optimizing the filtering parameters of the field filtering models and advancing the accuracy of identifying downhole event locations.展开更多
Experimental research into the hydraulic conductivity curve (HCC) of unsaturated soil is limited due to the inherent challenge associated with labor, cost, and time. Typically, the HCC is estimated using the soil wate...Experimental research into the hydraulic conductivity curve (HCC) of unsaturated soil is limited due to the inherent challenge associated with labor, cost, and time. Typically, the HCC is estimated using the soil water characteristic curve (SWCC) based models and saturated hydraulic conductivity (SHC). However, the efficiency of the SWCC-based model is rarely assessed, and the influence of soil density and pore structure on HCC remains incomplete due to limited experimental data. To address this gap, this study employs an innovative filter-paper-based column method, which can measure the HCC over a wide suction range (e.g. 0−105 kPa), to capture the HCCs of both intact and compacted specimens with varying dry densities. The efficiency of two typical SWCC-based models is assessed using the measured data. Meanwhile, the mercury intrusion porosity (MIP) technique is employed to obtain the pore characteristic (i.e. pore size distribution (PSD)) and a method of predicting the HCC using the PSD data is proposed, emphasizing the dominant role of the pore structure in shaping the HCC. The results reveal that the dry density's influence on the HCC is primarily observed within the low suction range, corresponding to variations in the dominant and large pores. In the high suction range, the HCCs align along a linear trajectory when plotted in a log-log format. A notable finding is the overestimation of the HCC obtained from the SWCC-based models using the measured SHC. When the SHC is regarded as a fitting parameter, good agreement is achieved. The adjusted SHC value is typically 0-1 order of magnitude lower than the measured value, and this discrepancy diminishes as dry density increases. On the other hand, the proposed PSD-based model performs well with the measured SHC data. Caution is exercised when using the SHC to estimate the HCC for modeling water movement in partially saturated soil.展开更多
Electronic skin has showcased superior sensing capabilities inspired from human skin.However,most preceding studies focused on the dermis of the skin rather than the epidermis.In particular,the pseudo-porous structura...Electronic skin has showcased superior sensing capabilities inspired from human skin.However,most preceding studies focused on the dermis of the skin rather than the epidermis.In particular,the pseudo-porous structural domain of the epidermis increases the skin's tolerance while ensuring its susceptibility to touch.Yet,most endeavors on the porous structures failed to replicate the superior sensing performance of skin-like counterparts in terms of sensitivity and/or detection range.Stimulated by the strategy that the epidermis of the skin absorbs energy while producing ionic conduction to the nerves,this work initiatively introduced an easy-to-produce,and low-cost pressure sensor based on ionic-gel foam,and achieved a high sensitivity(2893 kPa^(-1))within a wide pressure range(up to~1 MPa),which ranked among the best cases thus far.Moreover,the factors affecting the sensor performance were explored while the sensing principles were enriched.Inspiringly,the plantar pressure measurement by harnessing the as-prepared sensor unveiled an ultra-broad detection range(100 Pa-1 MPa),thus delivering a huge application potential in the field of robot and health monitoring.展开更多
基金supported by the Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments,China(Grant No.22dz2260800)the Shanghai Science and Technology Committee,China(Grant No.22JC1410300).
文摘Multiple principal element alloys(MPEAs),also known as high-entropy alloys,have attracted significant attention because of their exceptional mechanical and thermal properties.A critical factor influencing these properties is suggested to be the presence of chemical short-range order(SRO),characterized by specific atomic arrangements occurring more frequently than in a random distribution.Despite extensive efforts to elucidate SRO,particularly in face-centered cubic(fcc)3d transition metal-based MPEAs,several key aspects remain under debate:the conditions under which SRO forms,the reliability of characterization methods for detecting SRO,and its quantitative impact on mechanical performance.This review summarizes the challenges and unresolved issues in this emerging field,drawing comparisons with well-established research on SRO in binary alloys over the past few decades.Through this cross-system comparison,we aim to provide new insights into SRO from a comprehensive perspective.
文摘The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,resulting in point cloud loss or reduced accuracy.To address this issue,unlike the pixel modulation method of projectors,we utilize the characteristics of color projectors where the intensity of the three-channel LED can be controlled independently.We propose a method for separating the projector's three-channel light intensity,combined with a color camera,to achieve single exposure and multi-intensity image acquisition.Further,the crosstalk coefficient is applied to predict the three-channel reflectance of the measured object.By integrating clustering and channel mapping,we establish a pixel-level mapping model between the projector's three-channel current and the camera's three-channel image intensity,which realizes the optimal projection current prediction and the high dynamic range(HDR)image acquisition.The proposed method allows for high-precision three-dimensional(3D)data acquisition of HDR scenes with a single exposure.The effectiveness of this method has been validated through experiments with standard planes and standard steps,showing a significant reduction in mean absolute error(44.6%)compared to existing singleexposure HDR methods.Additionally,the number of images required for acquisition is significantly reduced(by 70.8%)compared to multi-exposure fusion methods.This proposed method has great potential in various FPP-related fields.
文摘Resonant linear and nonlinear properties in terahertz range of 2D materials graphene and silicene placed into a bias magnetic field are investigated theoretically on the base of the quasi-classical kinetic theory. When the electromagnetic frequency is close to the cyclotron one, the linear conductivity increases two orders. Under the resonant frequencies nonlinearity becomes essential at low magnitudes of terahertz electric fields. In absence of a bias magnetic field the nonlinear dependences of the surface electric currents on terahertz electric field are practically the same simulated from kinetics and electron hydrodynamics with nonzero “kinetic” electron effective mass. Graphene possesses higher values of nonlinearity of the resonant conductivity, whereas in absence of a bias magnetic field, the electron nonlinearity is higher in silicene.
基金Project supported by the National Natural Science Foundation of China(Grant No.32473216)Ningbo Youth Science and Technology Innovation Leading Talent Project(Grant No.2023QL004)。
文摘Vibration detection using sensors with both wide working frequency range,good sensitivity,and other good performances is a topic of great interest in fields such as inertial navigation,deep-sea fishing boat engines condition monitoring,seismic monitoring,attitude,and heading reference system,etc.This paper investigates two 6H-SIC MEMS diaphragms,one triangular and the other square,used in a fiber optic Fabry–Perot(FP)accelerometer in an experimental scenario.The triangular chip shows a wide working frequency range of 630 Hz–5300 Hz,a natural frequency of 44.3 k Hz,and a mechanical sensitivity of 0.154 nm/g.An optimal structure of the square chip used in a probe such as a fiber optic FP accelerometer also shows a wide working frequency range of 120 Hz–2300 Hz;a good sensitivity of 31.5 m V/g,a resonance frequency of7873 Hz,an accuracy of 0.96%F.S.,a frequency measurement error of 1.15%,and an excellent linearity of 0.9995.
基金supported by the National Natural Science Foundation of China(62201243)Natural Science Foundation of Guangdong Province(2022A1515011928)+2 种基金Shenzhen Science and Technology Program(Grant No.RCYX20231211090432060,JSGGZD20220822095600001)Postgraduate Scientific Research Innovation Project of Hunan Province(CX20231306)the technical support from the Southern University of Science and Technology Core Research Facilities(SUSTech CRF)。
文摘Ammonium level in body fluids serves as one of the critical biomarkers for healthcare,especially those relative to liver diseases.The continuous and real-time monitoring in both invasive and noninvasive manners is highly desired,while the ammonium concentrations vary largely in different body fluids.Besides,the sensing reliability based on ion-selective biosensors can be significantly interfered by potassium ions.To tackle these challenges,a flexible and biocompatible sensing patch for wireless ammonium level sensing was reported with an ultrawide linear range for universal body fluids including blood,tears,saliva,sweat and urine.The as-prepared biocompatible sensors deliver a reliable sensitivity of 58.7 mV decade-1 in the range of 1-100 mM and a desirable selectivity coefficient of 0.11 in the interference of potassium ions,attributed to the cross-calibration within the sensors array.The sensor’s biocompatibility was validated by the cell growth on the sensor surface(>80%),hemolysis rates(<5%),negligible cellular inflammatory responses and weight changes of the mice with implanted sensors.Such biocompatible sensors with ultrawide linear range and desirable selectivity open up new possibility of highly compatible biomarker analysis via different body fluids in versatile approaches.
基金supported by grants from the National Natural Science Foundation of China(Grant No.32271733)Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515011045)+1 种基金Science and Technology Projects in Guangzhou(Grant No.2023A04J0121)SCNU Training Program of Innovation for Undergraduates,China。
文摘Anthropogenic climate change is altering species distributions globally.While species distributions are expected to shift to higher latitudes and elevations under global warming,empirical evidence on distribution shifts is mixed,and factors mediating the direction and magnitude of range shifts remain unclear.Using a dataset of 132new provincial records for 96 resident bird species from 2000 to 2023,we measured geographic distance,latitudinal shift,and temperature shift from each new record to the historical range for each species to test for poleward shifts.We assessed taxonomic variation in the magnitude of range shifts and used phylogenetic generalized linear mixed models to quantify relationships between species traits and the extent of range shifts.Our results revealed that new records occurred at a mean geographic distance of 420 km from historical ranges,with mean latitudinal shifts of+1.68°(poleward)and temperature shifts of-1.33℃(toward colder climates).The magnitude of geographic range shifts was strongly constrained by phylogenetic relatedness.Habitat breadth,habitat openness,and centroid latitude of historical ranges emerged as significant predictors of range shifts.Our results suggest that resident bird species'geographic ranges in China are shifting poleward,but the magnitude of these shifts is non-random across lineages.Species with broader habitat preferences and those from warmer climates are more likely to shift farther from their historical ranges and toward higher latitudes.This study emphasizes taxonomic variation in species range shifts and highlights the need for species-and site-specific conservation strategies under global warming.
基金financially supported by the National Natural Science Foundation of China(Nos.22435005,22193042,21921001,52202194,22305105,22201284)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.ZDBSLY-SLH024)。
文摘Two-dimensional(2D)organic-inorganic hybrid perovskites(OIHPs)have been developed as promising candidates for photodetection,owing to their excellent semiconducting features and structural tunability.However,as an important parameter for photodetection,the photoresponsive range of 2D OIHPs is usually modulated by finite metal-halide combinations,constraining their further development.The emerging aromatic amine-based alternating-cations-interlayered(A-ACI)hybrid perovskites that exhibit excellent charge transport and additional interlayered structural designability,provide an extra solution for achieving ideal photoresponsive range.Herein,for the first time,the photoresponsive range is successfully broadened in A-ACI hybrid perovskites(NMA)_(4)(FA)_(2)Pb_(3)Br_(12)(2)remolding from(NMA)_(4)(MA)_(2)Pb_(3)Br_(12)(1)(NMA=N-methylbenzylaminium,FA=formamidinium and MA=methylammonium).Particularly,1 and 2adopt an unprecedented configuration that NMA and MA/FA are alternately arranged in the interlayer in a 4:2 manner.Importantly,2 exhibits a narrower bandgap than 1,which can be ascribed to the lowlying conduct band composed of intercalation FAπ*orbitals.Meanwhile,2 possesses a shorter interlayer distance and flatter inorganic skeleton,synergistically facilitating the wider photo-absorption range and further endowing a broadening photoresponsive range(70 nm).This research not only enriches the perovskite family but also provides insights into structure-property relationships.
基金financial support of the Faculty Research Grant project of the American University of Central Asia(AUCA)supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea(NRF-2023S1A5B5A16080131)。
文摘Geodetic observations over the past several decades identify the Tien Shan as a prominent and active intracontinental mountain belt,characterized by a meridional shortening rate of up to 20 mm/a.The region has experienced significant seismic events,particularly along its northern boundary,highlighting the recurrent seismic activity in the Kyrgyz Republic.The Issyk-Ata fault,stretching 120 km from west to east in the northern Tien Shan,bounds from the north a young,growing anticline demarcating the foothills of the Kyrgyz Range and the Chui depression.This region is susceptible to strong earthquakes,posing a significant threat to the Chui region and Bishkek,the capital city with over a million residents.The youngest fault in the area is the Issyk-Ata fault,traversing the southern part of Bishkek,where modern construction has obscured its features.This study integrates remote sensing,detailed fieldwork,and paleoseismological investigations to map and analyze surface ruptures,quantify vertical displacements,and assess seismic hazards along the Issyk-Ata fault.Using optically stimulated luminescence and radiocarbon dating,we determined ages for documented paleoseismic events,placing two ancient earthquakes in the Holocene.Magnitude estimates suggest seismic events with magnitudes ranging from 6.6 to 7.1.In the Dzhal area,geological and geomorphological analysis yielded a longterm fault-slip rate of 1.15 mm/a.The Issyk-Ata fault shows variable rupture behavior,with distinct segments demonstrating different seismic characteristics and histories of activity.This variability necessitates comprehensive seismic hazard modeling to better understand and mitigate potential risks in the region.
基金the financial support received from the National Natural Science Foundation of China(22378426,22138013)the Natural Science Foundation of Shandong Province(ZR2022MB088)the Taishan Scholar Project(ts201712020)。
文摘High-voltage dual-ion batteries(DIBs)face significant challenges,including graphite cathode degradation,cathode-electrolyte interphase(CEI)instability,and the thermodynamic instability of conventional carbonate-based electrolytes,particularly at extreme temperatures.In this study,we develop a stable electrolyte incorporating lithium difluorophosphate(LiDFP)as an additive to enhance the electrochemical performance of DIBs over a wide temperature range.LiDFP preferentially decomposes to form a rapid anion-transporting,mechanically robust CEI layer on graphite,which provides better protection by suppressing graphite's volume expansion,preventing electrolyte oxidative decomposition,and enhancing reaction kinetics.As a result,Li||graphite half cells using LiDFP electrolyte exhibit outstanding rate performance(90.8% capacity retention at 30 C)and excellent cycle stability(82.2% capacity retention after 5000 cycles)at room temperature.Moreover,graphite||graphite full cells with LiDFP electrolyte demonstrate stable discharge capacity across a temperature range of-20 to 40℃,expanding the potential applications of LiDFP.This work establishes a novel strategy for optimizing the interphase through electrolyte design,paving the way for all-climate DIBs with improved performance and stability.
基金supported by the National Natural Science Foundation of China(Grant Nos.52192633,92371201,11872293,and 92152301)the Natural Science Foundation of Shaanxi Province(Grant No.2022JC-03).
文摘The high-speed reentry vehicle operates across a broad range of speeds and spatial domains,where optimal aerodynamic shapes for different speeds are contradictory.This makes it challenging for a single-Mach optimization design to meet aerodynamic performance requirements throughout the vehicle’s flight envelope.Additionally,the strong coupling between aerodynamics and control adds complexity,as fluctuations in aerodynamic parameters due to speed variations complicate control system design.To address these challenges,this study proposes an aerodynamic/control coupling optimization design approach.This method,based on aerodynamic optimization principles,incorporates active control technology,treating aerodynamic layout and control system design as primary components during the conceptual design phase.By integrating the design and evaluation of aerodynamics and control,the approach aims to reduce design iterations and enhance overall flight performance.The comprehensive design of the rotary reentry vehicle,using this optimization strategy,effectively balances performance at supersonic and hypersonic speeds.The results show that the integrated design model meets aerodynamic and control performance requirements over a broader range of Mach numbers,preventing performance degradation due to deviations from the design Mach number,and providing a practical solution for high-speed reentry vehicle design.
文摘Large dynamic range and ultra-wideband receiving abilities are significant for many receivers. With these abilities, receivers can obtain signals with different power in ultra-wideband frequency space without information loss. However, conventional receiving scheme is hard to have large dynamic range and ultra-wideband receiving simultaneously because of the analog-to-digital converter(ADC) dynamic range and sample rate limitations. In this paper, based on the modulated sampling and unlimited sampling, a novel receiving scheme is proposed to achieve large dynamic range and ultra-wideband receiving. Focusing on the single carrier signals, the proposed scheme only uses a single self-rest ADC(SR-ADC) with low sample rate, and it achieves large dynamic range and ultra-wideband receiving simultaneously. Two receiving scenarios are considered, and they are cooperative strong signal receiving and non-cooperative strong/weak signals receiving. In the cooperative receiving scenario, an improved fast recovery method is proposed to obtain the modulated sampling output. In the non-cooperative receiving scenario, the strong and weak signals with different carrier frequencies are considered, and the signal processing method can recover and estimate each signal. Simulation results show that the proposed scheme can realize large dynamic range and ultra-wideband receiving simultaneously when the input signal-to-noise(SNR) ratio is high.
基金supported by the National Natural Science Foundation of China(72101025,72271049),the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities,FRF-IDRY-24-024)the Hebei Natural Science Foundation(F2023501011)+1 种基金the Fundamental Research Funds for the Central Universities(FRF-TP-20-073A1)the R&D Program of Beijing Municipal Education Commission(KM202411232015).
文摘This paper proposes a reliability evaluation model for a multi-dimensional network system,which has potential to be applied to the internet of things or other practical networks.A multi-dimensional network system with one source element and multiple sink elements is considered first.Each element can con-nect with other elements within a stochastic connection ranges.The system is regarded as successful as long as the source ele-ment remains connected with all sink elements.An importance measure is proposed to evaluate the performance of non-source elements.Furthermore,to calculate the system reliability and the element importance measure,a multi-valued decision diagram based approach is structured and its complexity is analyzed.Finally,a numerical example about the signal transfer station system is illustrated to analyze the system reliability and the ele-ment importance measure.
基金supported by the Science and Technology Program Project of Tianjin(No.24ZXZSSS00300).
文摘Grating fringe projection 3D measurement techniques are extensively applied in various fields.However,in high dynamic range scenarios with significant surface reflectivity variations,uneven greyscale distribution may lead to phase errors and poor reconstruction results.To address this problem,an adaptive fringe projection method is introduced.The method involves projecting two sets of dark and light fringes onto the object,enabling the full-field projection intensity map to be generated adaptively based on greyscale analysis.First,dark fringes are projected onto the object to extend exposure time as long as possible without causing overexposure in the image.Subsequently,bright fringes are projected under the same exposure settings to detect overexposed pixels,and the greyscale distribution of these overexposed points from the previous dark fringe projection is analyzed to calculate the corresponding projection intensities.Finally,absolute phase information from orthogonal fringes is used for coordinate matching,enabling the generation of adaptive projection fringe patterns.Experiments on various high dynamic range objects show that compared to conventional fringe projection binocular reconstruction method,the proposed algorithm achieves complete reconstruction of high dynamic range surfaces and shows robust performance against phase calculation errors caused by overexposure and low modulation.
基金financially supported by the National Natural Science Foundation of China(No.21871122)。
文摘Organic afterglow materials hold significant potential for applications in information storage,anticounterfeiting,and biological imaging.However,studies on afterglow materials capable of ultra-wide range excitation and emission simultaneously are limited.To enhance the practicality of strong emission single-component organic afterglow systems,overcoming the constraints of crystalline or other rigid environments is essential.We have developed solid-state dual-persistent thermally activated delayed fluorescence(TADF)and room temperature phosphorescence(RTP)emissions spanning yellow to red under visible light excitation,utilizing a single-molecule terminal group regulation strategy.The RTP lifetime extends from 4.19 ms to 399.70 ms.These afterglow materials exhibit an ultra-wide absorption range from 200 nm to 800 nm,rendering them capable of being excited by both sunlight simulator and nearinfrared radiation.The upconversion phosphorescence lifetime under 808 nm excitation reaches 13.72μs.The double persistent emission of these compounds is temperature-sensitive.Moreover,following grinding or heat treatment,accompanied by extensive afterglow color conversion due to planarization of excited state conformations and additional efficient kRIsc generation.In addition,the amorphous state post melt annealing facilitates the afterglow transition from yellow to green.Crucially,these compounds also maintain stable ultra-long afterglow emission in aqueous and acid-base environments.Overall,we have successfully developed a series of single-component intelligent luminescent materials that demonstrate significant benefits,including dual TADF and RTP emissions,adjustable afterglow lifetimes,a broad range of excitation and emission wavelengths,multi-modal luminescence not restricted to crystalline states,and robust afterglow performance in challenging environments,setting the stage for the practical deployment of afterglow materials in engineering applications,the upconversion afterglow emission also holds promising potential for applications in the field of biological imaging.
基金supported by the National Natural Science Foundation of China(Grant Nos.12204173 and 12275263)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301900)supported by the Natural Science Foundation of Fujian Province 802 of China(Grant No.2023J02032)。
文摘The crossover between short-range and long-range(LR)universal behaviors remains a central theme in the physics of LR interacting systems.The competition between LR coupling and the Berezinskii-Kosterlitz-Thouless mechanism makes the problem more subtle and less understood in the two-dimensional(2D)XY model,a cornerstone for investigating low-dimensional phenomena and their implications in quantum computation.We study the 2D XY model with algebraically decaying interaction~1/r^(2+σ).Utilizing an advanced update strategy,we conduct LR Monte Carlo simulations of the model up to a linear size of L=8192.Our results demonstrate continuous phase transitions into a ferromagnetic phase forσ<2,which exhibit the simultaneous emergence of a long-ranged order and a power-law decaying correlation function due to the Goldstone mode.Furthermore,we fnd logarithmic scaling behaviors in the low-temperature phase atσ=2.The observed scaling behaviors in the low-temperature phase forσ≤2 agree with our theoretical analysis.Our fndings request further theoretical understanding and can be of practical application in cutting-edge experiments like Rydberg atom arrays.
基金financial support by the National Natural Science Foundation of China(22371010,21771017 and 51702009)the“Hundred Talents Program”of the Chinese Academy of Science,Fundamental Research Funds for the Central Universities,Shenzhen Science and Technology Program(JCYJ20210324115412035 JCYJ2021-0324123202008,JCYJ20210324122803009 and ZDSYS20210813095534001)Guangdong Basic and Applied Basic Research Foundation(2021A1515110880).
文摘Common anode materials in aqueous alkaline electrolytes,such as cadmium,metal hydrides and zinc,usually suffer from remarkable biotoxicity,high cost,and serious side reactions.To overcome these problems,we develop a conjugated porous polymer(CPP)in-situ grown on reduced graphene oxide(rGO)and Ketjen black(KB),noted as C_(4)N/rGO and C_(4)N/KB respectively,as the alternative anodes.The results show that C_(4)N/rGO electrode delivers a low redox potential(−0.905 V vs.Ag/AgCl),high specific capacity(268.8 mAh g^(-1) at 0.2 A g^(-1)),ultra-stable and fast sodium ion storage behavior(216 mAh g^(-1) at 20 A g^(-1))in 2 M NaOH electrolyte.The assembled C_(4)N/rGO//Ni(OH)_(2) full battery can cycle stably more than 38,000 cycles.Furthermore,by adding a small amount of antifreeze additive dimethyl sulfoxide(DMSO)to adjust the hydrogen bonding network,the low-temperature performance of the electrolyte(0.1 DMSO/2 M NaOH)is significantly improved while hydrogen evolution is inhibited.Consequently,the C_(4)N/rGO//Ni(OH)_(2) full cell exhibits an energy density of 147.3 Wh Kg^(-1) and ultra-high cycling stability over a wide temperature range from−70 to 45℃.This work provides an ultra-stable high-capacity CPPbased anode and antifreeze electrolyte for aqueous alkaline batteries and will facilitate their practical applications under extreme conditions.
基金support from the National Natural Science Foundation of China(No.52374019).
文摘Water hammer diagnostics is an important fracturing diagnosis technique to evaluate fracture locations and other downhole events in fracturing. The evaluation results are obtained by analyzing shut-in water hammer pressure signal. The field-sampled water hammer signal is often disturbed by noise interference. Noise interference exists in various pumping stages during water hammer diagnostics, with significantly different frequency range and energy distribution. Clarifying the differences in frequency range and energy distribution between effective water hammer signals and noise is the basis of setting specific filtering parameters, including filtering frequency range and energy thresholds. Filtering specifically could separate the effective signal and noise, which is the key to ensuring the accuracy of water hammer diagnosis. As an emerging technique, there is a lack of research on the frequency range and energy distribution of effective signals in water hammer diagnostics. In this paper, the frequency range and energy distribution characteristics of field-sampled water hammer signals were clarified quantitatively and qualitatively for the first time by a newly proposed comprehensive water hammer segmentation-energy analysis method. The water hammer signals were preprocessed and divided into three segments, including pre-shut-in, water hammer oscillation, and leak-off segment. Then, the three segments were analyzed by energy analysis and correlation analysis. The results indicated that, one aspect, the frequency range of water hammer oscillation spans from 0 to 0.65 Hz, considered as effective water hammer signal. The pre-shut-in and leak-off segment ranges from 0 to 0.35 Hz and 0-0.2 Hz respectively. Meanwhile, odd harmonics were manifested in water hammer oscillation segment, with the harmonic frequencies ranging approximately from 0.07 to 0.75 Hz. Whereas integer harmonics were observed in pre-shut-in segment, ranging from 6 to 40 Hz. The other aspect, the energy distribution of water hammer signals was analyzed in different frequency ranges. In 0-1 Hz, an exponential decay was observed in all three segments. In 1-100 Hz, a periodical energy distribution was observed in pre-shut-in segment, an exponential decay was observed in water hammer oscillation, and an even energy distribution was observed in leak-off segment. In 100-500 Hz, an even energy distribution was observed in those three segments, yet the highest magnitude was noted in leak-off segment. In this study, the effective frequency range and energy distribution characteristics of the field-sampled water hammer signals in different segments were sufficiently elucidated quantitatively and qualitatively for the first time, laying the groundwork for optimizing the filtering parameters of the field filtering models and advancing the accuracy of identifying downhole event locations.
基金supported by the National Natural Science Foundation of China(Grant No.41825018)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA23090402)the National Natural Science Foundation of China(Grant No.42141009).
文摘Experimental research into the hydraulic conductivity curve (HCC) of unsaturated soil is limited due to the inherent challenge associated with labor, cost, and time. Typically, the HCC is estimated using the soil water characteristic curve (SWCC) based models and saturated hydraulic conductivity (SHC). However, the efficiency of the SWCC-based model is rarely assessed, and the influence of soil density and pore structure on HCC remains incomplete due to limited experimental data. To address this gap, this study employs an innovative filter-paper-based column method, which can measure the HCC over a wide suction range (e.g. 0−105 kPa), to capture the HCCs of both intact and compacted specimens with varying dry densities. The efficiency of two typical SWCC-based models is assessed using the measured data. Meanwhile, the mercury intrusion porosity (MIP) technique is employed to obtain the pore characteristic (i.e. pore size distribution (PSD)) and a method of predicting the HCC using the PSD data is proposed, emphasizing the dominant role of the pore structure in shaping the HCC. The results reveal that the dry density's influence on the HCC is primarily observed within the low suction range, corresponding to variations in the dominant and large pores. In the high suction range, the HCCs align along a linear trajectory when plotted in a log-log format. A notable finding is the overestimation of the HCC obtained from the SWCC-based models using the measured SHC. When the SHC is regarded as a fitting parameter, good agreement is achieved. The adjusted SHC value is typically 0-1 order of magnitude lower than the measured value, and this discrepancy diminishes as dry density increases. On the other hand, the proposed PSD-based model performs well with the measured SHC data. Caution is exercised when using the SHC to estimate the HCC for modeling water movement in partially saturated soil.
基金supported the Chongqing Natural Science Foundation(CSTB2023NSCQ-MSX0459&CSTB2023NSCQ-MSX0231)the Graduate Research and Innovation Foundation of Chongqing,China(CYB23048)+1 种基金the Fundamental Research Program under Grant(JCKY2022603C017)National Natural Science Foundation of China(NSFC 52175281).
文摘Electronic skin has showcased superior sensing capabilities inspired from human skin.However,most preceding studies focused on the dermis of the skin rather than the epidermis.In particular,the pseudo-porous structural domain of the epidermis increases the skin's tolerance while ensuring its susceptibility to touch.Yet,most endeavors on the porous structures failed to replicate the superior sensing performance of skin-like counterparts in terms of sensitivity and/or detection range.Stimulated by the strategy that the epidermis of the skin absorbs energy while producing ionic conduction to the nerves,this work initiatively introduced an easy-to-produce,and low-cost pressure sensor based on ionic-gel foam,and achieved a high sensitivity(2893 kPa^(-1))within a wide pressure range(up to~1 MPa),which ranked among the best cases thus far.Moreover,the factors affecting the sensor performance were explored while the sensing principles were enriched.Inspiringly,the plantar pressure measurement by harnessing the as-prepared sensor unveiled an ultra-broad detection range(100 Pa-1 MPa),thus delivering a huge application potential in the field of robot and health monitoring.