The presence of a positive deep surgical margin in tongue squamous cell carcinoma(TSCC)significantly elevates the risk of local recurrence.Therefore,a prompt and precise intraoperative assessment of margin status is i...The presence of a positive deep surgical margin in tongue squamous cell carcinoma(TSCC)significantly elevates the risk of local recurrence.Therefore,a prompt and precise intraoperative assessment of margin status is imperative to ensure thorough tumor resection.In this study,we integrate Raman imaging technology with an artificial intelligence(AI)generative model,proposing an innovative approach for intraoperative margin status diagnosis.This method utilizes Raman imaging to swiftly and non-invasively capture tissue Raman images,which are then transformed into hematoxylin-eosin(H&E)-stained histopathological images using an AI generative model for histopathological diagnosis.The generated H&E-stained images clearly illustrate the tissue’s pathological conditions.Independently reviewed by three pathologists,the overall diagnostic accuracy for distinguishing between tumor tissue and normal muscle tissue reaches 86.7%.Notably,it outperforms current clinical practices,especially in TSCC with positive lymph node metastasis or moderately differentiated grades.This advancement highlights the potential of AI-enhanced Raman imaging to significantly improve intraoperative assessments and surgical margin evaluations,promising a versatile diagnostic tool beyond TSCC.展开更多
Edge structures are ubiquitous in the processing and fabrication of various optoelectronic devices.Novel physical properties and enhanced light–matter interactions are anticipated to occur at crystal edges due to the...Edge structures are ubiquitous in the processing and fabrication of various optoelectronic devices.Novel physical properties and enhanced light–matter interactions are anticipated to occur at crystal edges due to the broken spatial translational symmetry.However,the intensity of first-order Raman scattering at crystal edges has been rarely explored,although the mechanical stress and edge characteristics have been thoroughly studied by the Raman peak shift and the spectral features of the edge-related Raman modes.Here,by taking Ga As crystal with a well-defined edge as an example,we reveal the intensity enhancement of Raman-active modes and the emergence of Raman-forbidden modes under specific polarization configurations at the edge.This is attributed to the presence of a hot spot at the edge due to the redistributed electromagnetic fields and electromagnetic wave propagations of incident laser and Raman signal near the edge,which are confirmed by the finite-difference time-domain simulations.Spatially-resolved Raman intensities of both Raman-active and Raman-forbidden modes near the edge are calculated based on the redistributed electromagnetic fields,which quantitatively reproduce the corresponding experimental results.These findings offer new insights into the intensity enhancement of Raman scattering at crystal edges and present a new avenue to manipulate light–matter interactions of crystal by manufacturing various types of edges and to characterize the edge structures in photonic and optoelectronic devices.展开更多
Lipids play an important role in the regulation of cell life processes.Although there are various lipid detection methods,Raman spectroscopy,a non-invasive technique,provides the detailed chemical composition of lipid...Lipids play an important role in the regulation of cell life processes.Although there are various lipid detection methods,Raman spectroscopy,a non-invasive technique,provides the detailed chemical composition of lipid profiles without a complex sample preparation procedure and possesses greater potential in basic biology,clinical diagnosis and disease therapy.In this review,we summarized the characteristics and advantages of Raman-based techniques and their primary contribution to illustrating cellular lipid metabolism.展开更多
Stimulated Raman scattering(SRS)under a new ignition path that combines the advantages of direct-drive(DD)and indirect-drive(ID)schemes is investigated experimentally at the Shenguang-100 kJ facility.The results show ...Stimulated Raman scattering(SRS)under a new ignition path that combines the advantages of direct-drive(DD)and indirect-drive(ID)schemes is investigated experimentally at the Shenguang-100 kJ facility.The results show that collective SRS in the plasma produced by ablating a polyimide film is detected for the ID beams,but is suppressed by adding a toe before the main pulse of the ID beams.The toe also strongly influences SRS of both the ID and DD beams excited in the plasma generated in the hohlraum.When a toe is used,the SRS spectra of the DD beams show that SRS tends to be excited in lower plasma density,which will result in a lower risk of super-hot electrons.Measurements of hot electrons support this conclusion.This research will help us produce a better pulse design for this new ignition path.展开更多
Recent experiments at the National Ignition Facility and theoretical modeling suggest that side stimulated Raman scattering(SSRS)instability could reduce laser–plasma coupling and generate considerable fluxes of supr...Recent experiments at the National Ignition Facility and theoretical modeling suggest that side stimulated Raman scattering(SSRS)instability could reduce laser–plasma coupling and generate considerable fluxes of suprathermal hot electrons under interaction conditions envisaged for direct-drive schemes for inertial confinement fusion.Nonetheless,SSRS remains to date one of the least understood parametric instabilities.Here,we report the first angularly and spectrally resolved measurements of scattered light at laser intensities relevant for the shock ignition scheme(I×10^(16)W/cm^(2)),showing significant SSRS growth in the direction perpendicular to the laser polarization.Modification of the focal spot shape and orientation,obtained by using two different random phase plates,and of the density gradient of the plasma,by utilizing exploding foil targets of different thicknesses,clearly reveals a different dependence of backward SRS(BSRS)and SSRS on experimental parameters.While convective BSRS scales with plasma density scale length,as expected by linear theory,the growth of SSRS depends on the spot extension in the direction perpendicular to laser polarization.Our analysis therefore demonstrates that under current experimental conditions,with density scale lengths L_(n)≈60–120μm and spot sizes FWHM≈40–100μm,SSRS is limited by laser beam size rather than by the density scale length of the plasma.展开更多
Glucose molecules are of great significance being one of the most important molecules in metabolic chain.However,due to the small Raman scattering cross-section and weak/non-adsorption on bare metals,accurately obtain...Glucose molecules are of great significance being one of the most important molecules in metabolic chain.However,due to the small Raman scattering cross-section and weak/non-adsorption on bare metals,accurately obtaining their"fingerprint information"remains a huge obstacle.Herein,we developed a tip-enhanced Raman scattering(TERS)technique to address this challenge.Adopting an optical fiber radial vector mode internally illuminates the plasmonic fiber tip to effectively suppress the background noise while generating a strong electric-field enhanced tip hotspot.Furthermore,the tip hotspot approaching the glucose molecules was manipulated via the shear-force feedback to provide more freedom for selecting substrates.Consequently,our TERS technique achieves the visualization of all Raman modes of glucose molecules within spectral window of 400-3200 cm^(-1),which is not achievable through the far-field/surface-enhanced Raman,or the existing TERS techniques.Our TERS technique offers a powerful tool for accurately identifying Raman scattering of molecules,paving the way for biomolecular analysis.展开更多
In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to con...In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to concentrate free silver nanoparticles(AgNPs)within an optofluidic chip,significantly enhancing SERS performance.We investigated the optical field distribution characteristics within the tapered fiber using COMSOL simulation software and established a MATLAB simulation model to validate the single-beam optical trap's effectiveness in capturing AgNPs,demonstrating the theoretical feasibility of our approach.To verify the particle capture efficacy of the system,we experimentally controlled the optical trap's on-off state to manage the capture and release of particles precisely.The experimental results indicated that the Raman signal intensity in the capture state was significantly higher than in the non-capture state,confirming that the single-beam optical trap effectively enhances the SERS detection capability of the optofluidic detection system.Furthermore,we employed Raman mapping techniques to investigate the impact of the capture area on the SERS effect,revealing that the spectral intensity of molecular fingerprints in the laser-trapping region is significantly improved.We successfully detected the Raman spectrum of crystal violet at a concentration of 10^(−9)mol/L and pesticide thiram at a concentration of 10^(−5)mol/L,further demonstrating the ability of the single-beam optical trap in enhancing the molecular fingerprint spectrum identification capability of the SERS optofluidic chips.The optical trapping SERS optofluidic detection system developed in this study,as a key component of an integrated optoelectronic sensing system,holds the potential for integration with portable high-power lasers and high-performance Raman spectrometers.This integration is expected to advance highly integrated technologies and significantly enhance the overall performance and portability of optoelectronic sensing systems.展开更多
Raman spectroscopy offers a great power to detect,analyze and identify molecules,and monitor their temporal dynamics and evolution when combined with single-molecule surface-enhanced Raman scattering(SM-SERS)substrate...Raman spectroscopy offers a great power to detect,analyze and identify molecules,and monitor their temporal dynamics and evolution when combined with single-molecule surface-enhanced Raman scattering(SM-SERS)substrates.Here we present a SM-SERS scheme that involves simultaneously giant chemical enhancement from WS22D materials,giant electromagnetic enhancement from plasmonic nanogap hot spot,and inhibition of molecular fluorescence influence under near-infrared laser illumination.Remarkably we find Coulomb attraction between analyte and gold nanoparticle can trigger spontaneous formation of molecule-hotspot pairing with high precision,stability and robustness.The scheme has enabled realization of universal,robust,fast,and large-scale uniform SM-SERS detection for three Raman molecules of rhodamine B,rhodamine 6G,and crystal violet with a very low detection limit of 10−16 M and at a very fast spectrum acquisition time of 50 ms.展开更多
Quantitative detection of trace small-sized nanoplastics(<100 nm)remains a significant challenge in surface-enhanced Raman scattering(SERS).To tackle this issue,we developed a hydrophobic CuO@Ag nanowire substrate ...Quantitative detection of trace small-sized nanoplastics(<100 nm)remains a significant challenge in surface-enhanced Raman scattering(SERS).To tackle this issue,we developed a hydrophobic CuO@Ag nanowire substrate and introduced a multiplex-feature analysis strategy based on the coffee ring effect.This substrate not only offers high Raman enhancement but also exhibits a high probability of detection(POD),enabling rapid and accurate identification of 50 nm polystyrene nanoplastics over a broad concentration range(1–10−10 wt%).Importantly,experimental results reveal a strong correlation between the coffee ring formation and the concentration of nanoplastic dispersion.By incorporating Raman signal intensity,coffee ring diameter,and POD as combined features,we established a machine learning-based mapping between nanoplastic concentration and coffee ring characteristics,allowing precise predictions of dispersion concentration.The mean squared error of these predictions is remarkably low,ranging from 0.21 to 0.54,representing a 19 fold improvement in accuracy compared to traditional linear regression-based methods.This strategy effectively integrates SERS with wettability modification techniques,ensuring high sensitivity and fingerprinting capabilities,while addressing the limitations of Raman signal intensity in accurately reflecting concentration changes at ultra-low levels,providing a new idea for precise SERS measurements of nanoplastics.展开更多
In the field of Raman spectroscopy detection,the quest for a non–noble metal,recyclable,and highly sensitive detection substrate is of utmost importance.In this work,a new crystalline and noble metal–free substrate ...In the field of Raman spectroscopy detection,the quest for a non–noble metal,recyclable,and highly sensitive detection substrate is of utmost importance.In this work,a new crystalline and noble metal–free substrate of[Bi(DMF)_(8)][PMo_(12)O_(40)](Bi–PMo_(12))is designed,which is composed of[PMo_(12)O_(40)]^(3−)and solvated[Bi(DMF)_(8)]^(3+)cations.Mechanistic studies have revealed that Raman scattering quenching phenomenon arises from two main factors.Firstly,it arises from the absorption of the scattered light due to the transition of a single electron in the reduced state of MoV between 4d orbitals.Secondly,after the interaction between the substrate and hydrazine,the surface undergoes varying degrees of roughening,leading to an impact on the scattered light intensity.These two effects collectively contribute to the detection of low concentrations of N_(2)H_(4).As a result,Bi–PMo_(12)opens up a novel Raman scattering quenching mechanism to realize the detection of reduced N_(2)H_(4)small molecules.A remarkably low detection limit of 4.5×10^(−9)ppm for N_(2)H_(4)is achieved on the Bi–PMo_(12)substrate.This detection has a lower concentration than the currently known SERS detection of N_(2)H_(4).Moreover,Bi–PMo_(12)can be recovered and reused through recrystallization,achieving a recovery rate of up to ca.51%.This study reveals the underlying potential of crystalline polyoxometalate materials in the field of Raman detection,thus opening up new avenues for highly sensitive analysis using Raman techniques.展开更多
This paper presents a polymer-brush-guided templating strategy for fabricating ordered gold plasmonic architectures.The synthesized nanostructures featuring densely packed Au nanoparticles(NPs)exhibited strong surface...This paper presents a polymer-brush-guided templating strategy for fabricating ordered gold plasmonic architectures.The synthesized nanostructures featuring densely packed Au nanoparticles(NPs)exhibited strong surface-enhanced Raman scattering(SERS)activity.Using a simple mechanical transfer technique,these assemblies were integrated into flexible polydimethylsiloxane(PDMS)films.Polymer encapsulation during synthesis ensures structural integrity during processing,resulting in a mechanically robust SERS substrate with exceptional analytical performance.This platform achieved 4-mercaptobenzoic acid(4-MBA)detection at 100 pmol/L(10-10 mol/L)with high reproducibility(RSD=6.8%).Environmental and mechanical stability tests demonstrated 95%signal retention over 30 days and sustained functionality after 100 bending/twisting cycles.Combined with a non-destructive adhesion-transfer protocol,the substrate enabled on-site thiram detection on apple surfaces(1μmol/L limit).This study provides a scalable approach for developing flexible SERS devices for food safety monitoring and environmental analysis.展开更多
Antifungal resistance is the leading cause of antifungal treatment failure in invasive candidiasis.Metabolic rewiring could become a new insight to account for antifungal resistance as to find innovative clinical ther...Antifungal resistance is the leading cause of antifungal treatment failure in invasive candidiasis.Metabolic rewiring could become a new insight to account for antifungal resistance as to find innovative clinical therapies.Here,we show that dynamic surface-enhanced Raman spectroscopy is a promising tool to identify the metabolic differences between fluconazole(Diflucan)-resistant and fluconazole(Diflucan)-sensitive Candida albicans through the signatures of biochemical components and complemented with machine learning algorithms and two-dimensional correlation spectroscopy,an underlying resistance mechanism,that is,the change of purine metabolites induced the resistance of Candida albicans has been clarified yet never reported anywhere.We hope the integrated methodology introduced in this work could be beneficial for the interpretation of cellular regulation,propelling the development of targeted antifungal therapies and diagnostic tools for more efficient management of severe antifungal resistance.展开更多
A way to enhance the growth of stimulated Raman instability in laser-plasma interactions was investigated.This relies on the application of density modulation of a co-propagating electron beam in plasmas.In the stimul...A way to enhance the growth of stimulated Raman instability in laser-plasma interactions was investigated.This relies on the application of density modulation of a co-propagating electron beam in plasmas.In the stimulated Raman scattering process,an electromagnetic pump wave decays into a low-frequency wave and a scattered electromagnetic sideband wave.In this process,the pump wave produces an oscillatory velocity associated with the plasma electrons and the beam electrons.These oscillatory velocities combine with the existing low-frequency mode,producing ponderomotive force that drives high-frequency sideband waves.The sidebands couple to the pump wave,driving the beam-mode.A modulation of the electron beam density enhances the growth rate of the instability.The theoretical calculations show about 40%enhancements in growth of Raman instability at resonance(where the electron beam density modulation parameter approaches to unity)for the plasma density of the order of 10^(18)cm^(-3).展开更多
BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the e...BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the early diagnosis of tumors because it can reflect the structures of substances and their changes at the molecular level.AIM To detect alterations in Raman spectral information across different stages of esophageal neoplasia.METHODS Different grades of esophageal lesions were collected,and a total of 360 groups of Raman spectrum data were collected.A 1D-transformer network model was proposed to handle the task of classifying the spectral data of esophageal squamous cell carcinoma.In addition,a deep learning model was applied to visualize the Raman spectral data and interpret their molecular characteristics.RESULTS A comparison among Raman spectral data with different pathological grades and a visual analysis revealed that the Raman peaks with significant differences were concentrated mainly at 1095 cm^(-1)(DNA,symmetric PO,and stretching vibration),1132 cm^(-1)(cytochrome c),1171 cm^(-1)(acetoacetate),1216 cm^(-1)(amide III),and 1315 cm^(-1)(glycerol).A comparison among the training results of different models revealed that the 1Dtransformer network performed best.A 93.30%accuracy value,a 96.65%specificity value,a 93.30%sensitivity value,and a 93.17%F1 score were achieved.CONCLUSION Raman spectroscopy revealed significantly different waveforms for the different stages of esophageal neoplasia.The combination of Raman spectroscopy and deep learning methods could significantly improve the accuracy of classification.展开更多
The principle of optical time-domain reflection localization limits the sensing spatial resolution of Raman distributed optical fiber sensing.We provide a solution for a Raman distributed optical fiber sensing system ...The principle of optical time-domain reflection localization limits the sensing spatial resolution of Raman distributed optical fiber sensing.We provide a solution for a Raman distributed optical fiber sensing system with kilometer-level sensing distance and submeter spatial resolution.Based on this,we propose a Raman distributed optical fiber sensing scheme based on chaotic pulse cluster demodulation.Chaotic pulse clusters are used as the probe signal,in preference to conventional pulsed or chaotic single-pulse lasers.Furthermore,the accurate positioning of the temperature variety region along the sensing fiber can be realized using chaotic pulse clusters.The proposed demodulation scheme can enhance the signal-to-noise ratio by improving the correlation between the chaotic reference and the chaotic Raman anti-Stokes scattering signals.The experiment achieved a sensing spatial resolution of 30 cm at a distributed temperature-sensing distance of∼6.0 km.Furthermore,we explored the influence of chaotic pulse width and detector bandwidth on the sensing spatial resolution.In addition,the theoretical experiments proved that the sensing spatial resolution in the proposed scheme was independent of the pulse width and sensing distance.展开更多
Large-angle stimulated Raman scattering(LA-SRS)in a longitudinally inhomogeneous plasma with a transverse density modulation is studied using a three-wave coupled model and numerical simulations.The simulations show t...Large-angle stimulated Raman scattering(LA-SRS)in a longitudinally inhomogeneous plasma with a transverse density modulation is studied using a three-wave coupled model and numerical simulations.The simulations show that the scattering angle of SRS in a longitudinally inhomogeneous plasma can be significantly affected by transverse density modulation.Under transverse density modulation conditions,the laser focuses into underdense regions,owing to the transversely modulated refractive index.The angle of LA-SRS,neither a purely 90° angle side scattering nor purely backscattering,is almost consistent with the specific angle at which the density inhomogeneity vanishes.In modulated plasmas,the nonuniform distribution of laser intensity shifts the regions of scattering and gain compared with those in uniform plasmas,ultimately affecting the laser transmission.SRS is suppressed in weakly modulated regimes,whereas it is enhanced under strong modulation conditions,and a theoretical criterion distinguishing between strong and weak modulation is established.展开更多
Lithium metal batteries(LMBs)have attracted great intention due to the high energy density[1].Among various battery technologies,lithium-sulfur(Li-S)batteries are also very unique but important due to its high energy ...Lithium metal batteries(LMBs)have attracted great intention due to the high energy density[1].Among various battery technologies,lithium-sulfur(Li-S)batteries are also very unique but important due to its high energy density,low cost and available sources[2].Although Li-s batteries exhibit high energy density,the cycling life is poor,especially for large-capacity pouch cells[3].The cycling performance of Li-s batteries is crucially determined by 16-electron complex sulfur reduction reaction(SRR)from S_(8)molecules to Li_(2)S,solid,which involves the multiple potential interwoven branches among lithium polysulfide intermediates(LiPS,e.g.,S_(8),Li_(2)S_(8),Li_(2)S_(6),Li_(2)S_(4)and Li_(2)S)[4].The obvious shuttle for soluble Lips across the cathode and anode leads to the battery capacity fading.Thus,it is necessary to decrease the accumulation of soluble Lips in the electrolyte through catalysts fastening the key conversion step from high-order polysulfides to insoluble Li_(2)S_(2)/Li_(2)S.Although some effort has been devoted to catalyze SRR,the complex mechanism remains unclear.To address this issue,Duan et al.tried to solve it based on nitrogen,sulfur,dualdoped holey graphene framework(N,S-HGF)electrocatalyst in Nature[5].展开更多
The lattice dynamics of a high Al composition semiconductor alloy,Al_(0.86)Ga_(0.14)N,in comparison with intrinsic GaN and AlN are studied by Stokes/anti-Stokes Raman spectroscopy in the temperature range of 85–823 K...The lattice dynamics of a high Al composition semiconductor alloy,Al_(0.86)Ga_(0.14)N,in comparison with intrinsic GaN and AlN are studied by Stokes/anti-Stokes Raman spectroscopy in the temperature range of 85–823 K.The phonon anharmonic effect in Al_(0.86)Ga_(0.14)N is found to be stronger than that in GaN,revealing low thermal conductivity in the semiconductor alloy.Multi-phonon coupling behavior is analyzed by both Stokes Raman and anti-Stokes Raman spectroscopy.It is interesting to find that the anti-Stokes scattering exhibits stronger three-phonon coupling than the Stokes scattering,which may be due to the fact that the anti-stokes scattering process is generated from an excited state and the scattered photons have higher energies.The Stokes/anti-Stokes temperature correction factor β for Raman modes in Al_(0.86)Ga_(0.14)N alloy are all smaller than those of the corresponding intrinsic modes in GaN and AlN.The reasons for the difference in b can be attributed to three aspects,including the equipment setups,materials properties(the binding energy)and the coupling strength of Raman scattering and the sample.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.82272955 and 22203057)the Natural Science Foundation of Fujian Province(Grant No.2021J011361).
文摘The presence of a positive deep surgical margin in tongue squamous cell carcinoma(TSCC)significantly elevates the risk of local recurrence.Therefore,a prompt and precise intraoperative assessment of margin status is imperative to ensure thorough tumor resection.In this study,we integrate Raman imaging technology with an artificial intelligence(AI)generative model,proposing an innovative approach for intraoperative margin status diagnosis.This method utilizes Raman imaging to swiftly and non-invasively capture tissue Raman images,which are then transformed into hematoxylin-eosin(H&E)-stained histopathological images using an AI generative model for histopathological diagnosis.The generated H&E-stained images clearly illustrate the tissue’s pathological conditions.Independently reviewed by three pathologists,the overall diagnostic accuracy for distinguishing between tumor tissue and normal muscle tissue reaches 86.7%.Notably,it outperforms current clinical practices,especially in TSCC with positive lymph node metastasis or moderately differentiated grades.This advancement highlights the potential of AI-enhanced Raman imaging to significantly improve intraoperative assessments and surgical margin evaluations,promising a versatile diagnostic tool beyond TSCC.
基金Project supported by the National Key Research and Development Program of China(Grant No.2023YFA1407000)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB0460000)+4 种基金the National Natural Science Foundation of China(Grant Nos.12322401,12127807,and 12393832)CAS Key Research Program of Frontier Sciences(Grant No.ZDBS-LY-SLH004)Beijing Nova Program(Grant No.20230484301)Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2023125)CAS Project for Young Scientists in Basic Research(Grant No.YSBR-026)。
文摘Edge structures are ubiquitous in the processing and fabrication of various optoelectronic devices.Novel physical properties and enhanced light–matter interactions are anticipated to occur at crystal edges due to the broken spatial translational symmetry.However,the intensity of first-order Raman scattering at crystal edges has been rarely explored,although the mechanical stress and edge characteristics have been thoroughly studied by the Raman peak shift and the spectral features of the edge-related Raman modes.Here,by taking Ga As crystal with a well-defined edge as an example,we reveal the intensity enhancement of Raman-active modes and the emergence of Raman-forbidden modes under specific polarization configurations at the edge.This is attributed to the presence of a hot spot at the edge due to the redistributed electromagnetic fields and electromagnetic wave propagations of incident laser and Raman signal near the edge,which are confirmed by the finite-difference time-domain simulations.Spatially-resolved Raman intensities of both Raman-active and Raman-forbidden modes near the edge are calculated based on the redistributed electromagnetic fields,which quantitatively reproduce the corresponding experimental results.These findings offer new insights into the intensity enhancement of Raman scattering at crystal edges and present a new avenue to manipulate light–matter interactions of crystal by manufacturing various types of edges and to characterize the edge structures in photonic and optoelectronic devices.
基金supported by the National Natural Science Foundation of China(Grant NOs.:82374169,and 82074085).
文摘Lipids play an important role in the regulation of cell life processes.Although there are various lipid detection methods,Raman spectroscopy,a non-invasive technique,provides the detailed chemical composition of lipid profiles without a complex sample preparation procedure and possesses greater potential in basic biology,clinical diagnosis and disease therapy.In this review,we summarized the characteristics and advantages of Raman-based techniques and their primary contribution to illustrating cellular lipid metabolism.
基金supported by the National Natural Science Foundation of China(Grant Nos.12205274,12275251,12105270,12205272,12305262,and 12035002)the National Key Laboratory of Plasma Physics(Grant No.JCKYS2024212803)+2 种基金the Fund of the National Key Laboratory of Plasma Physics(Grant No.6142A04230103)the National Key R&D Program of China(Grant No.2023YFA1608400)the National Security Academic Fund(Grant No.U2430207).
文摘Stimulated Raman scattering(SRS)under a new ignition path that combines the advantages of direct-drive(DD)and indirect-drive(ID)schemes is investigated experimentally at the Shenguang-100 kJ facility.The results show that collective SRS in the plasma produced by ablating a polyimide film is detected for the ID beams,but is suppressed by adding a toe before the main pulse of the ID beams.The toe also strongly influences SRS of both the ID and DD beams excited in the plasma generated in the hohlraum.When a toe is used,the SRS spectra of the DD beams show that SRS tends to be excited in lower plasma density,which will result in a lower risk of super-hot electrons.Measurements of hot electrons support this conclusion.This research will help us produce a better pulse design for this new ignition path.
基金financial support from the LASERLAB-EUROPE Access to Research Infrastructure Activity (Application No. 23068)carried out within the framework of EUROfusion Enabling Research Projects AWP21-ENR-01-CEA02 and AWP24-ENR-IFE-02-CEA-02+3 种基金received funding from Euratom Research and Training Programme 2021–2025 under Grant No. 633053supported by the Ministry of Youth and Sports of the Czech Republic [Project No. LM2023068 (PALS RI)]by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDA25030200 and XDA25010100)supported by COST (European Cooperation in Science and Technology) through Action CA21128 PROBONO (PROton BOron Nuclear Fusion: from energy production to medical applicatiOns)
文摘Recent experiments at the National Ignition Facility and theoretical modeling suggest that side stimulated Raman scattering(SSRS)instability could reduce laser–plasma coupling and generate considerable fluxes of suprathermal hot electrons under interaction conditions envisaged for direct-drive schemes for inertial confinement fusion.Nonetheless,SSRS remains to date one of the least understood parametric instabilities.Here,we report the first angularly and spectrally resolved measurements of scattered light at laser intensities relevant for the shock ignition scheme(I×10^(16)W/cm^(2)),showing significant SSRS growth in the direction perpendicular to the laser polarization.Modification of the focal spot shape and orientation,obtained by using two different random phase plates,and of the density gradient of the plasma,by utilizing exploding foil targets of different thicknesses,clearly reveals a different dependence of backward SRS(BSRS)and SSRS on experimental parameters.While convective BSRS scales with plasma density scale length,as expected by linear theory,the growth of SSRS depends on the spot extension in the direction perpendicular to laser polarization.Our analysis therefore demonstrates that under current experimental conditions,with density scale lengths L_(n)≈60–120μm and spot sizes FWHM≈40–100μm,SSRS is limited by laser beam size rather than by the density scale length of the plasma.
基金supported by National Natural Science Foundation of China(12374358,91950207)Guangdong Basic and Applied Basic Research Foundation(2024A1515010420).
文摘Glucose molecules are of great significance being one of the most important molecules in metabolic chain.However,due to the small Raman scattering cross-section and weak/non-adsorption on bare metals,accurately obtaining their"fingerprint information"remains a huge obstacle.Herein,we developed a tip-enhanced Raman scattering(TERS)technique to address this challenge.Adopting an optical fiber radial vector mode internally illuminates the plasmonic fiber tip to effectively suppress the background noise while generating a strong electric-field enhanced tip hotspot.Furthermore,the tip hotspot approaching the glucose molecules was manipulated via the shear-force feedback to provide more freedom for selecting substrates.Consequently,our TERS technique achieves the visualization of all Raman modes of glucose molecules within spectral window of 400-3200 cm^(-1),which is not achievable through the far-field/surface-enhanced Raman,or the existing TERS techniques.Our TERS technique offers a powerful tool for accurately identifying Raman scattering of molecules,paving the way for biomolecular analysis.
基金financial supports from National Natural Science Foundation of China(62175023).
文摘In this study,we developed a single-beam optical trap-based surface-enhanced Raman scattering(SERS)optofluidic molecular fingerprint spectroscopy detection system.This system utilizes a single-beam optical trap to concentrate free silver nanoparticles(AgNPs)within an optofluidic chip,significantly enhancing SERS performance.We investigated the optical field distribution characteristics within the tapered fiber using COMSOL simulation software and established a MATLAB simulation model to validate the single-beam optical trap's effectiveness in capturing AgNPs,demonstrating the theoretical feasibility of our approach.To verify the particle capture efficacy of the system,we experimentally controlled the optical trap's on-off state to manage the capture and release of particles precisely.The experimental results indicated that the Raman signal intensity in the capture state was significantly higher than in the non-capture state,confirming that the single-beam optical trap effectively enhances the SERS detection capability of the optofluidic detection system.Furthermore,we employed Raman mapping techniques to investigate the impact of the capture area on the SERS effect,revealing that the spectral intensity of molecular fingerprints in the laser-trapping region is significantly improved.We successfully detected the Raman spectrum of crystal violet at a concentration of 10^(−9)mol/L and pesticide thiram at a concentration of 10^(−5)mol/L,further demonstrating the ability of the single-beam optical trap in enhancing the molecular fingerprint spectrum identification capability of the SERS optofluidic chips.The optical trapping SERS optofluidic detection system developed in this study,as a key component of an integrated optoelectronic sensing system,holds the potential for integration with portable high-power lasers and high-performance Raman spectrometers.This integration is expected to advance highly integrated technologies and significantly enhance the overall performance and portability of optoelectronic sensing systems.
基金financial support from Science and Technology Project of Guangdong(2020B010190001)National Natural Science Foundation(12434016).
文摘Raman spectroscopy offers a great power to detect,analyze and identify molecules,and monitor their temporal dynamics and evolution when combined with single-molecule surface-enhanced Raman scattering(SM-SERS)substrates.Here we present a SM-SERS scheme that involves simultaneously giant chemical enhancement from WS22D materials,giant electromagnetic enhancement from plasmonic nanogap hot spot,and inhibition of molecular fluorescence influence under near-infrared laser illumination.Remarkably we find Coulomb attraction between analyte and gold nanoparticle can trigger spontaneous formation of molecule-hotspot pairing with high precision,stability and robustness.The scheme has enabled realization of universal,robust,fast,and large-scale uniform SM-SERS detection for three Raman molecules of rhodamine B,rhodamine 6G,and crystal violet with a very low detection limit of 10−16 M and at a very fast spectrum acquisition time of 50 ms.
基金the National Natural Science Foundation of China(No.12174229 and 22375117)Natural Science Foundation of Shandong Province(No.ZR2022YQ02 and ZR2023MB149)Taishan Scholars Program of Shandong Province(No.tsqn202306152)for financial support.
文摘Quantitative detection of trace small-sized nanoplastics(<100 nm)remains a significant challenge in surface-enhanced Raman scattering(SERS).To tackle this issue,we developed a hydrophobic CuO@Ag nanowire substrate and introduced a multiplex-feature analysis strategy based on the coffee ring effect.This substrate not only offers high Raman enhancement but also exhibits a high probability of detection(POD),enabling rapid and accurate identification of 50 nm polystyrene nanoplastics over a broad concentration range(1–10−10 wt%).Importantly,experimental results reveal a strong correlation between the coffee ring formation and the concentration of nanoplastic dispersion.By incorporating Raman signal intensity,coffee ring diameter,and POD as combined features,we established a machine learning-based mapping between nanoplastic concentration and coffee ring characteristics,allowing precise predictions of dispersion concentration.The mean squared error of these predictions is remarkably low,ranging from 0.21 to 0.54,representing a 19 fold improvement in accuracy compared to traditional linear regression-based methods.This strategy effectively integrates SERS with wettability modification techniques,ensuring high sensitivity and fingerprinting capabilities,while addressing the limitations of Raman signal intensity in accurately reflecting concentration changes at ultra-low levels,providing a new idea for precise SERS measurements of nanoplastics.
基金the financial support from the National Natural Science Foundation of China(No.21971085)the Natural Science Foundation of Shandong Province(No.ZR2021MB008)。
文摘In the field of Raman spectroscopy detection,the quest for a non–noble metal,recyclable,and highly sensitive detection substrate is of utmost importance.In this work,a new crystalline and noble metal–free substrate of[Bi(DMF)_(8)][PMo_(12)O_(40)](Bi–PMo_(12))is designed,which is composed of[PMo_(12)O_(40)]^(3−)and solvated[Bi(DMF)_(8)]^(3+)cations.Mechanistic studies have revealed that Raman scattering quenching phenomenon arises from two main factors.Firstly,it arises from the absorption of the scattered light due to the transition of a single electron in the reduced state of MoV between 4d orbitals.Secondly,after the interaction between the substrate and hydrazine,the surface undergoes varying degrees of roughening,leading to an impact on the scattered light intensity.These two effects collectively contribute to the detection of low concentrations of N_(2)H_(4).As a result,Bi–PMo_(12)opens up a novel Raman scattering quenching mechanism to realize the detection of reduced N_(2)H_(4)small molecules.A remarkably low detection limit of 4.5×10^(−9)ppm for N_(2)H_(4)is achieved on the Bi–PMo_(12)substrate.This detection has a lower concentration than the currently known SERS detection of N_(2)H_(4).Moreover,Bi–PMo_(12)can be recovered and reused through recrystallization,achieving a recovery rate of up to ca.51%.This study reveals the underlying potential of crystalline polyoxometalate materials in the field of Raman detection,thus opening up new avenues for highly sensitive analysis using Raman techniques.
基金supported by the National Natural Science Foundation of China(Nos.22401045,22301037)Natural Science Foundation of Guangdong Province(No.2022A1515110867).
文摘This paper presents a polymer-brush-guided templating strategy for fabricating ordered gold plasmonic architectures.The synthesized nanostructures featuring densely packed Au nanoparticles(NPs)exhibited strong surface-enhanced Raman scattering(SERS)activity.Using a simple mechanical transfer technique,these assemblies were integrated into flexible polydimethylsiloxane(PDMS)films.Polymer encapsulation during synthesis ensures structural integrity during processing,resulting in a mechanically robust SERS substrate with exceptional analytical performance.This platform achieved 4-mercaptobenzoic acid(4-MBA)detection at 100 pmol/L(10-10 mol/L)with high reproducibility(RSD=6.8%).Environmental and mechanical stability tests demonstrated 95%signal retention over 30 days and sustained functionality after 100 bending/twisting cycles.Combined with a non-destructive adhesion-transfer protocol,the substrate enabled on-site thiram detection on apple surfaces(1μmol/L limit).This study provides a scalable approach for developing flexible SERS devices for food safety monitoring and environmental analysis.
基金supported by grants from the National Natural Science Foundation of China(Nos.22074015 and 82074428)Youth Talent Cultivation Initiation Fund of Zhongda Hospital,Southeast University(No.CZXM-GSP-RC110)to Hao Li+1 种基金Evidence-Based Capacity Building for TCM Specialty Therapies for Skin Diseases of National Administration of TCMInnovative Team Projects of Shanghai Municipal Commission of Health(No.2022CX011)to Fulun Li.
文摘Antifungal resistance is the leading cause of antifungal treatment failure in invasive candidiasis.Metabolic rewiring could become a new insight to account for antifungal resistance as to find innovative clinical therapies.Here,we show that dynamic surface-enhanced Raman spectroscopy is a promising tool to identify the metabolic differences between fluconazole(Diflucan)-resistant and fluconazole(Diflucan)-sensitive Candida albicans through the signatures of biochemical components and complemented with machine learning algorithms and two-dimensional correlation spectroscopy,an underlying resistance mechanism,that is,the change of purine metabolites induced the resistance of Candida albicans has been clarified yet never reported anywhere.We hope the integrated methodology introduced in this work could be beneficial for the interpretation of cellular regulation,propelling the development of targeted antifungal therapies and diagnostic tools for more efficient management of severe antifungal resistance.
基金financially supported by the Science and Engineering Research Board,Government of India(Grant No.CRG/2022/001989)。
文摘A way to enhance the growth of stimulated Raman instability in laser-plasma interactions was investigated.This relies on the application of density modulation of a co-propagating electron beam in plasmas.In the stimulated Raman scattering process,an electromagnetic pump wave decays into a low-frequency wave and a scattered electromagnetic sideband wave.In this process,the pump wave produces an oscillatory velocity associated with the plasma electrons and the beam electrons.These oscillatory velocities combine with the existing low-frequency mode,producing ponderomotive force that drives high-frequency sideband waves.The sidebands couple to the pump wave,driving the beam-mode.A modulation of the electron beam density enhances the growth rate of the instability.The theoretical calculations show about 40%enhancements in growth of Raman instability at resonance(where the electron beam density modulation parameter approaches to unity)for the plasma density of the order of 10^(18)cm^(-3).
基金Supported by Beijing Hospitals Authority Youth Programme,No.QML20200505.
文摘BACKGROUND Esophageal squamous cell carcinoma is a major histological subtype of esophageal cancer.Many molecular genetic changes are associated with its occurrence.Raman spectroscopy has become a new method for the early diagnosis of tumors because it can reflect the structures of substances and their changes at the molecular level.AIM To detect alterations in Raman spectral information across different stages of esophageal neoplasia.METHODS Different grades of esophageal lesions were collected,and a total of 360 groups of Raman spectrum data were collected.A 1D-transformer network model was proposed to handle the task of classifying the spectral data of esophageal squamous cell carcinoma.In addition,a deep learning model was applied to visualize the Raman spectral data and interpret their molecular characteristics.RESULTS A comparison among Raman spectral data with different pathological grades and a visual analysis revealed that the Raman peaks with significant differences were concentrated mainly at 1095 cm^(-1)(DNA,symmetric PO,and stretching vibration),1132 cm^(-1)(cytochrome c),1171 cm^(-1)(acetoacetate),1216 cm^(-1)(amide III),and 1315 cm^(-1)(glycerol).A comparison among the training results of different models revealed that the 1Dtransformer network performed best.A 93.30%accuracy value,a 96.65%specificity value,a 93.30%sensitivity value,and a 93.17%F1 score were achieved.CONCLUSION Raman spectroscopy revealed significantly different waveforms for the different stages of esophageal neoplasia.The combination of Raman spectroscopy and deep learning methods could significantly improve the accuracy of classification.
基金supported by the National Natural Science Foundation of China(Grant Nos.U23A20375 and 62075151)the National Key Research and Development Program of China(Grant No.202103021223042).
文摘The principle of optical time-domain reflection localization limits the sensing spatial resolution of Raman distributed optical fiber sensing.We provide a solution for a Raman distributed optical fiber sensing system with kilometer-level sensing distance and submeter spatial resolution.Based on this,we propose a Raman distributed optical fiber sensing scheme based on chaotic pulse cluster demodulation.Chaotic pulse clusters are used as the probe signal,in preference to conventional pulsed or chaotic single-pulse lasers.Furthermore,the accurate positioning of the temperature variety region along the sensing fiber can be realized using chaotic pulse clusters.The proposed demodulation scheme can enhance the signal-to-noise ratio by improving the correlation between the chaotic reference and the chaotic Raman anti-Stokes scattering signals.The experiment achieved a sensing spatial resolution of 30 cm at a distributed temperature-sensing distance of∼6.0 km.Furthermore,we explored the influence of chaotic pulse width and detector bandwidth on the sensing spatial resolution.In addition,the theoretical experiments proved that the sensing spatial resolution in the proposed scheme was independent of the pulse width and sensing distance.
基金supported by the National Natural Science Foundation of China under Grant Nos.U2430207,12035002,and 12305258by the CAEP Foundation under Grant No.YZJJZQ2023020.
文摘Large-angle stimulated Raman scattering(LA-SRS)in a longitudinally inhomogeneous plasma with a transverse density modulation is studied using a three-wave coupled model and numerical simulations.The simulations show that the scattering angle of SRS in a longitudinally inhomogeneous plasma can be significantly affected by transverse density modulation.Under transverse density modulation conditions,the laser focuses into underdense regions,owing to the transversely modulated refractive index.The angle of LA-SRS,neither a purely 90° angle side scattering nor purely backscattering,is almost consistent with the specific angle at which the density inhomogeneity vanishes.In modulated plasmas,the nonuniform distribution of laser intensity shifts the regions of scattering and gain compared with those in uniform plasmas,ultimately affecting the laser transmission.SRS is suppressed in weakly modulated regimes,whereas it is enhanced under strong modulation conditions,and a theoretical criterion distinguishing between strong and weak modulation is established.
文摘Lithium metal batteries(LMBs)have attracted great intention due to the high energy density[1].Among various battery technologies,lithium-sulfur(Li-S)batteries are also very unique but important due to its high energy density,low cost and available sources[2].Although Li-s batteries exhibit high energy density,the cycling life is poor,especially for large-capacity pouch cells[3].The cycling performance of Li-s batteries is crucially determined by 16-electron complex sulfur reduction reaction(SRR)from S_(8)molecules to Li_(2)S,solid,which involves the multiple potential interwoven branches among lithium polysulfide intermediates(LiPS,e.g.,S_(8),Li_(2)S_(8),Li_(2)S_(6),Li_(2)S_(4)and Li_(2)S)[4].The obvious shuttle for soluble Lips across the cathode and anode leads to the battery capacity fading.Thus,it is necessary to decrease the accumulation of soluble Lips in the electrolyte through catalysts fastening the key conversion step from high-order polysulfides to insoluble Li_(2)S_(2)/Li_(2)S.Although some effort has been devoted to catalyze SRR,the complex mechanism remains unclear.To address this issue,Duan et al.tried to solve it based on nitrogen,sulfur,dualdoped holey graphene framework(N,S-HGF)electrocatalyst in Nature[5].
基金supported by the National Natural Science Foundation of China(Grant No.12374013)the Fundamental Research Funds for the Central Universities(Grant No.2020SCUNL107).
文摘The lattice dynamics of a high Al composition semiconductor alloy,Al_(0.86)Ga_(0.14)N,in comparison with intrinsic GaN and AlN are studied by Stokes/anti-Stokes Raman spectroscopy in the temperature range of 85–823 K.The phonon anharmonic effect in Al_(0.86)Ga_(0.14)N is found to be stronger than that in GaN,revealing low thermal conductivity in the semiconductor alloy.Multi-phonon coupling behavior is analyzed by both Stokes Raman and anti-Stokes Raman spectroscopy.It is interesting to find that the anti-Stokes scattering exhibits stronger three-phonon coupling than the Stokes scattering,which may be due to the fact that the anti-stokes scattering process is generated from an excited state and the scattered photons have higher energies.The Stokes/anti-Stokes temperature correction factor β for Raman modes in Al_(0.86)Ga_(0.14)N alloy are all smaller than those of the corresponding intrinsic modes in GaN and AlN.The reasons for the difference in b can be attributed to three aspects,including the equipment setups,materials properties(the binding energy)and the coupling strength of Raman scattering and the sample.