Radon变换反演分辨率是其在地震资料处理中应用的关键因素.常规高分辨率Radon变换反演模型采用L_(1)范数实现稀疏正则化,其以Radon系数振幅总体大小衡量稀疏性,未能充分考虑到Radon系数振幅相对强弱,以此构建的反演方法旨在通过衰减弱...Radon变换反演分辨率是其在地震资料处理中应用的关键因素.常规高分辨率Radon变换反演模型采用L_(1)范数实现稀疏正则化,其以Radon系数振幅总体大小衡量稀疏性,未能充分考虑到Radon系数振幅相对强弱,以此构建的反演方法旨在通过衰减弱振幅来提高稀疏性,对Radon系数分辨率提高效果有限.本文提出一种以信号振幅相对大小衡量Radon系数稀疏性的尺度不变稀疏度量(Scale-Invariant Sparsity Measure,SSM)函数,并以L_(1)/L_(2)范数作为其光滑近似.针对L_(1)/L_(2)正则化的非线性,改进交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)对其求解.合成数据与实际地震资料处理结果表明,该方法能够增强一次波与多次波在Radon域的分辨率,降低Radon变换的能量扩散,提高多次波压制效果;同时该方法能够较好地压制随机噪声,方法具有一定的稳健性.展开更多
Seismic wavefields propagate through three-dimensional(3D)space,and their precise characterization is crucial for understanding subsurface structures.Traditional 2D algorithms,due to their limitations,are insufficient...Seismic wavefields propagate through three-dimensional(3D)space,and their precise characterization is crucial for understanding subsurface structures.Traditional 2D algorithms,due to their limitations,are insufficient to fully represent three-dimensional wavefields.The classic 3D Radon transform algorithm assumes that the wavefield's propagation characteristics are consistent in all directions,which often does not hold true in complex underground media.To address this issue,we present an improved 3D three-parameter Radon algorithm that considers the wavefield variation with azimuth and provides a more accurate wavefield description.However,introducing new parameters to describe the azimuthal varia-tion also poses computational challenges.The new Radon transform operator involves five variables and cannot be simply decomposed into small matrices for efficient computation;instead,it requires large matrix multiplication and inversion operations,significantly increasing the computational load.To overcome this challenge,we have integrated the curvature and frequency parameters,simplifying all frequency operators to the same,thereby significantly improving computation efficiency.Furthermore,existing transform algorithms neglect the lateral variation of seismic amplitudes,leading to discrepancies between the estimated multiples and those in the data.To enhance the amplitude preservation of the algorithm,we employ orthogonal polynomial fitting to capture the amplitude spatial variation in 3D seismic data.Combining these improvements,we propose a fast,amplitude-preserving,3D three-parameter Radon transform algorithm.This algorithm not only enhances computational efficiency while maintaining the original wavefield characteristics,but also improves the representation of seismic data by increasing amplitude fidelity.We validated the algorithm in multiple attenuation using both synthetic and real seismic data.The results demonstrate that the new algorithm significantly improves both accuracy and computational efficiency,providing an effective tool for analyzing seismic wavefields in complex subsurface structures.展开更多
This study systematically investigates the concentration of ^(222)Rn in geothermal fluids and the distribution of geothermal radon mineral water in Shandong Province,with the aim of elucidating formation mechanisms an...This study systematically investigates the concentration of ^(222)Rn in geothermal fluids and the distribution of geothermal radon mineral water in Shandong Province,with the aim of elucidating formation mechanisms and influencing factors.The findings indicate that the overall abundance of ^(222)Rn in geothermal fluids across the region is relatively low.Geothermal radon mineral water is primarily located within banded thermal reservoirs associated with bedrock fracture structures in the Ludong and Luxi uplift geothermal zones.The study reveals that the ionic composition,radioactivity intensity,and extent of water-rock interactions exert only effects in the concentration of ^(222)Rn in geothermal fluids.The formation of geothermal radon mineral water is predominantly governed by“fracture-controlled”mechanisms,with thermal reservoir lithology,fracture tectonics,and seismic activity serving as key determinants.Additionally,the enrichment of ^(222)Rn in geothermal fluids is influenced by factors such as geothermal fluid temperature,depth of occurrence,cap rock thickness,and alteration processes.The genetic mechanisms of geothermal radon mineral water can be categorized into two types:„native‟and„composite‟.These findings provide critical insights into the exploration and development of geothermal radon mineral water resources in Shandong and similar regions.展开更多
Radon observation is an important measurement item of seismic precursor network observation.The radon detector calibration is a key technical link for ensuring radon observation accuracy.At present,the radon detector ...Radon observation is an important measurement item of seismic precursor network observation.The radon detector calibration is a key technical link for ensuring radon observation accuracy.At present,the radon detector calibration in seismic systems in China is faced with a series of bottleneck problems,such as aging and scrap,acquisition difficulties,high supervision costs,and transportation limitations of radon sources.As a result,a large number of radon detectors cannot be accurately calibrated regularly,seriously affecting the accuracy and reliability of radon observation data in China.To solve this problem,a new calibration method for radon detectors was established.The advantage of this method is that the dangerous radioactive substance,i.e.,the radon source,can be avoided,but only“standard instruments”and water samples with certain dissolved radon concentrations can be used to realize radon detector calibration.This method avoids the risk of radioactive leakage and solves the current widespread difficulties and bottleneck of radon detector calibration in seismic systems in China.The comparison experiment with the traditional calibration method shows that the error of the calibration coefficient obtained by the new method is less than 5%compared with that by the traditional method,which meets the requirements of seismic observation systems,confirming the reliability of the new method.This new method can completely replace the traditional calibration method of using a radon source in seismic systems.展开更多
Objective This study aimed to efficiently reduce the release of radon from water bodies to protect the environment.Methods Based on the sizes of the experimental setup and modular float,computational fluid dynamics(CF...Objective This study aimed to efficiently reduce the release of radon from water bodies to protect the environment.Methods Based on the sizes of the experimental setup and modular float,computational fluid dynamics(CFD)was used to assess the impact of the area coverage rate,immersion depth,diffusion coefficient,and radon transfer velocity at the gas–liquid interface on radon migration and exhalation of radon-containing water.Based on the numerical simulation results,an estimation model for the radon retardation rate was constructed.The effectiveness of the CFD simulation was evaluated by comparing the experimental and simulated variation values of the radon retardation rate with the coverage area rates.Results The effect of radon transfer velocity on radon retardation in water bodies was minor and insignificant according to the appropriate value;therefore,an estimation model of the radon retardation rate of the coverage of a radon-containing water body was constructed using the synergistic impacts of three factors:area coverage rate,immersion depth,and diffusion coefficient.The deviation between the experimental and simulated results was<4.3%.Conclusion Based on the numerical simulation conditions,an estimation model of the radon retardation rate of covering floats in water bodies under the synergistic effect of multiple factors was obtained,which provides a reference for designing covering floats for radon retardation in radoncontaining water.展开更多
文摘Radon变换反演分辨率是其在地震资料处理中应用的关键因素.常规高分辨率Radon变换反演模型采用L_(1)范数实现稀疏正则化,其以Radon系数振幅总体大小衡量稀疏性,未能充分考虑到Radon系数振幅相对强弱,以此构建的反演方法旨在通过衰减弱振幅来提高稀疏性,对Radon系数分辨率提高效果有限.本文提出一种以信号振幅相对大小衡量Radon系数稀疏性的尺度不变稀疏度量(Scale-Invariant Sparsity Measure,SSM)函数,并以L_(1)/L_(2)范数作为其光滑近似.针对L_(1)/L_(2)正则化的非线性,改进交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)对其求解.合成数据与实际地震资料处理结果表明,该方法能够增强一次波与多次波在Radon域的分辨率,降低Radon变换的能量扩散,提高多次波压制效果;同时该方法能够较好地压制随机噪声,方法具有一定的稳健性.
基金supported in part by National Natural Science Foundation of China(NSFC)under grant 42274139in part by the R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting applications,2022DQ0604-03).
文摘Seismic wavefields propagate through three-dimensional(3D)space,and their precise characterization is crucial for understanding subsurface structures.Traditional 2D algorithms,due to their limitations,are insufficient to fully represent three-dimensional wavefields.The classic 3D Radon transform algorithm assumes that the wavefield's propagation characteristics are consistent in all directions,which often does not hold true in complex underground media.To address this issue,we present an improved 3D three-parameter Radon algorithm that considers the wavefield variation with azimuth and provides a more accurate wavefield description.However,introducing new parameters to describe the azimuthal varia-tion also poses computational challenges.The new Radon transform operator involves five variables and cannot be simply decomposed into small matrices for efficient computation;instead,it requires large matrix multiplication and inversion operations,significantly increasing the computational load.To overcome this challenge,we have integrated the curvature and frequency parameters,simplifying all frequency operators to the same,thereby significantly improving computation efficiency.Furthermore,existing transform algorithms neglect the lateral variation of seismic amplitudes,leading to discrepancies between the estimated multiples and those in the data.To enhance the amplitude preservation of the algorithm,we employ orthogonal polynomial fitting to capture the amplitude spatial variation in 3D seismic data.Combining these improvements,we propose a fast,amplitude-preserving,3D three-parameter Radon transform algorithm.This algorithm not only enhances computational efficiency while maintaining the original wavefield characteristics,but also improves the representation of seismic data by increasing amplitude fidelity.We validated the algorithm in multiple attenuation using both synthetic and real seismic data.The results demonstrate that the new algorithm significantly improves both accuracy and computational efficiency,providing an effective tool for analyzing seismic wavefields in complex subsurface structures.
基金supported by the Geological Exploration Leading Demonstration and Science and Technology Research Project of Shandong Provincial Bureau of Geology and Mineral Resources Exploration and Development in 2022(No.KY202203).
文摘This study systematically investigates the concentration of ^(222)Rn in geothermal fluids and the distribution of geothermal radon mineral water in Shandong Province,with the aim of elucidating formation mechanisms and influencing factors.The findings indicate that the overall abundance of ^(222)Rn in geothermal fluids across the region is relatively low.Geothermal radon mineral water is primarily located within banded thermal reservoirs associated with bedrock fracture structures in the Ludong and Luxi uplift geothermal zones.The study reveals that the ionic composition,radioactivity intensity,and extent of water-rock interactions exert only effects in the concentration of ^(222)Rn in geothermal fluids.The formation of geothermal radon mineral water is predominantly governed by“fracture-controlled”mechanisms,with thermal reservoir lithology,fracture tectonics,and seismic activity serving as key determinants.Additionally,the enrichment of ^(222)Rn in geothermal fluids is influenced by factors such as geothermal fluid temperature,depth of occurrence,cap rock thickness,and alteration processes.The genetic mechanisms of geothermal radon mineral water can be categorized into two types:„native‟and„composite‟.These findings provide critical insights into the exploration and development of geothermal radon mineral water resources in Shandong and similar regions.
基金supported by the National Natural Science Foundation of China Study on the Key Technology of Non-radium Source Radon Chamber(No.42274235).
文摘Radon observation is an important measurement item of seismic precursor network observation.The radon detector calibration is a key technical link for ensuring radon observation accuracy.At present,the radon detector calibration in seismic systems in China is faced with a series of bottleneck problems,such as aging and scrap,acquisition difficulties,high supervision costs,and transportation limitations of radon sources.As a result,a large number of radon detectors cannot be accurately calibrated regularly,seriously affecting the accuracy and reliability of radon observation data in China.To solve this problem,a new calibration method for radon detectors was established.The advantage of this method is that the dangerous radioactive substance,i.e.,the radon source,can be avoided,but only“standard instruments”and water samples with certain dissolved radon concentrations can be used to realize radon detector calibration.This method avoids the risk of radioactive leakage and solves the current widespread difficulties and bottleneck of radon detector calibration in seismic systems in China.The comparison experiment with the traditional calibration method shows that the error of the calibration coefficient obtained by the new method is less than 5%compared with that by the traditional method,which meets the requirements of seismic observation systems,confirming the reliability of the new method.This new method can completely replace the traditional calibration method of using a radon source in seismic systems.
基金supported by a grant from the National Natural Science Foundation of China(Grant nos.31770907,31640022)the National Natural Science Foundation of China(Grant No.11575080)the Natural Science Foundation of Hunan Province,China(Grant No.2022JJ30482).
文摘Objective This study aimed to efficiently reduce the release of radon from water bodies to protect the environment.Methods Based on the sizes of the experimental setup and modular float,computational fluid dynamics(CFD)was used to assess the impact of the area coverage rate,immersion depth,diffusion coefficient,and radon transfer velocity at the gas–liquid interface on radon migration and exhalation of radon-containing water.Based on the numerical simulation results,an estimation model for the radon retardation rate was constructed.The effectiveness of the CFD simulation was evaluated by comparing the experimental and simulated variation values of the radon retardation rate with the coverage area rates.Results The effect of radon transfer velocity on radon retardation in water bodies was minor and insignificant according to the appropriate value;therefore,an estimation model of the radon retardation rate of the coverage of a radon-containing water body was constructed using the synergistic impacts of three factors:area coverage rate,immersion depth,and diffusion coefficient.The deviation between the experimental and simulated results was<4.3%.Conclusion Based on the numerical simulation conditions,an estimation model of the radon retardation rate of covering floats in water bodies under the synergistic effect of multiple factors was obtained,which provides a reference for designing covering floats for radon retardation in radoncontaining water.
基金funded by the Basic Research and Strategic Reserve Technology Research Fund Project of CNPC (2019D-500803)the national oil and gas project (2016zx05007-006)。