Li4Ti5012 (LTO) with rich R-TiO2 (17.06, 23.69, and 34.42 wt%), namely, R-TiO2@Li4Ti5O12 composites, were synthesized using the hydrothermal method and tetrabutyl titanate (TBT) as the precursor. Rietveld refinement o...Li4Ti5012 (LTO) with rich R-TiO2 (17.06, 23.69, and 34.42 wt%), namely, R-TiO2@Li4Ti5O12 composites, were synthesized using the hydrothermal method and tetrabutyl titanate (TBT) as the precursor. Rietveld refinement of X-ray diffraction (XRD) results show that the proportion of Li occupying 16d sites is extraordinary low and the lattice constants of LTO and R-TiO2 change with the ritanium dioxide content. EIS measurements showed that with in creasing R-TiO2 content, both its charge transfer impedance (Rct) and lithium ion diffusion coefficient (DLi) decreased. The changes of Rct and DLi caused by the increase of titanium dioxide content have synergic-antagonistic effects on the rate and cycle properties of Li4Ti5012. The rate performance is positively related to DLi, while the cycle property is negatively correlated with Rct, indicati ng that the rate performs nee is mainly related to DLi, while Rct more significantly affects the cycle performance. LTO-RT-17.06% exhibited excellent rate properties, especially under a high current density (5.0 C, 132.5 mAh/g) and LTO-RT-34.42% showed superior long-term cycle performance (0.012% capacity loss per cycle) compared to that of LTO-RT-17.06% and LTO-RT-23.69%.展开更多
The corrosion behavior of the 110S tube steel in the environments of high H2 S and CO2 content was inves- tigated by using a high-temperature and high-pressure autoclave, and the corrosion products were characterized ...The corrosion behavior of the 110S tube steel in the environments of high H2 S and CO2 content was inves- tigated by using a high-temperature and high-pressure autoclave, and the corrosion products were characterized by scanning electron microscopy and X ray diffraction technique. The results showed that all of the corrosion products under the test conditions mainly consisted of different types of iron sulfides such as pyrrhotite of Fe0.95 S, mackinaw- ite of FeS0.9, Fe0. 985 S and FeS, and the absence of iron carbonate in the corrosion scales indicated that the corrosion process was controlled by H2S corrosion. The corrosion rate of the 110S steel decreased firstly and then increased with the rising of temperature. The minimum corrosion rate occurred at 110 ℃. When the H2 S partial pressure PH2s below 9 MPa, the corrosion rate declined with the increase of PH2s. While over 9 MPa, a higher PH2s resulted in a faster corrosion process. With the increasing of the CO2 partial pressure, the corrosion rate had an increasing trend. The morphologies of the corrosion scales had a good accordance with the corrosion rates.展开更多
Leaf chlorophyll content(LCC)is an important physiological indicator of the actual health status of individual plants.An accurate estimation of LCC can therefore provide valuable information for precision field manage...Leaf chlorophyll content(LCC)is an important physiological indicator of the actual health status of individual plants.An accurate estimation of LCC can therefore provide valuable information for precision field management.Red-edge information from hyperspectral data has been widely used to estimate crop LCC.However,after the advent of red-edge bands in satellite imagery,no systematic evaluation of the performance of satellite data has been conducted.Toward this end,we analyze herein the performance of winter wheat LCC retrieval of currant and forthcoming satellites(RapidEye,Sentinel-2 and EnMAP)and their new red-edge bands by using partial least squares regression(PLSR)and a vegetation-indexbased approach.These satellite spectral data were obtained by resampling ground-measured hyperspectral data under various field conditions and according to specific spectral response functions and spectral resolution.The results showed:1)This study confirmed that RapidEye,Sentinel-2 and EnMAP data are suitable for winter wheat LCC retrieval.For the PLSR approach,Sentinel-2 data provided more accurate estimates of LCC(R2=0.755,0.844,0.805 for 2002,2010,and 2002+2010)than do RapidEye data(R2=0.689,0.710,0.707 for 2002,2010,and 2002+2010)and EnMAP data(R2=0.735,0.867,0.771 for 2002,2010,and 2002+2010).For index-based approaches,the MERIS terrestrial chlorophyll index,which is a vegetation index with two red-edge bands,was the most sensitive and robust index for LCC for both the Sentinel-2 and EnMAP data(R2≥0.628),and the indices(NDRE1,SRRE1 and CIRE1)with a single red-edge band were the most sensitive and robust indices for the RapidEye data(R2≥0.420);2)According to the analysis of the effect of the wavelength and number of used red-edge spectral bands on LCC retrieval,the short-wavelength red-edge bands(from 699 to 734 nm)provided more accurate predictions when using the PLSR approach,whereas the long-wavelength red-edge bands(740 to 783 nm)gave more accurate predictions when using the vegetation indice(VI)approach.In addition,the prediction accuracy of RapidEye,Sentinel-2 and EnMAP data was improved gradually because of more number of red-edge bands and higher spectral resolution;VI regression models that contain a single or multiple red-edge bands provided more accurate predictions of LCC than those without red-edge bands,but for normalized difference vegetation index(NDVI)-,simple ratio(SR)-and chlorophyll index(CI)-like index,two red-edge bands index didn’t significantly improve the predictive accuracy of LCC than those indices with a single red-edge band.Although satellite data with higher spectral resolution and a greater number of red-edge bands marginally improve the accuracy of estimates of crop LCC,the level of this improvement remains insufficient because of higher spectral resolution,which results in a worse signal-to-noise ratio.The results of this study are helpful to accurately monitor LCC of winter wheat in large-area and provide some valuable advice for design of red-edge spectral bands of satellite sensor in future.展开更多
The effects of B2O3 addition on both the sintering behavior and microwave dielectric properties of CaO-B2O3-SiO2 (CBS) glass ceramics were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diff...The effects of B2O3 addition on both the sintering behavior and microwave dielectric properties of CaO-B2O3-SiO2 (CBS) glass ceramics were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results show that the increasing amount of B203 causes the increase of the contents of [BO3], [BO4] and [SiO4], which deduces the increase of CaB204 and a-SiO2 and the decrease of CaSiO3 correspondingly. No new phase is observed throughout the entire experiments. A bulk density of 2.54 g/cm3, a thermal expansion coefficient value of 11.95× 10-6 ℃-1 (20-500℃), a dielectric constant er value of 6.42 and a dielectric loss tanδ value of 0.000 9 (measured at 9.7 GHz) are obtained for CBS glass ceramics containing 35%-B203 (mass fraction) sintered at 850 ℃ for 15 min.展开更多
To eliminate thermal stress and cracks in the process of laser cladding, a kind of bioceramic coating with gradient compositional design was prepared on the surface of Ti alloy by using wide-band laser cladding. And e...To eliminate thermal stress and cracks in the process of laser cladding, a kind of bioceramic coating with gradient compositional design was prepared on the surface of Ti alloy by using wide-band laser cladding. And effect of Y2O3 content on gradient bioceramic composite coating was studied. The experimental results indicate that adding rare earth can refine grain. Different rare earth contents affect formation of HA and β-TCP in bioceramic coating. When the content of rare earth ranges from 0.4% to 0.6%, the active extent of rare earth in synthesizing HA and β-TCP is the best, which indicates that “monosodium glutamate” effect of rare earth plays a dominant role. However, when rare earth content is up to 0.8%, the amount of synthesizing HA and β-TCP in coating conversely goes down, which demonstrates that rare earth gradually losts its catalysis in manufacturing HA and β-TCP.展开更多
The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigate...The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigated. Results showed that both the carrier concentration and carrier mobility were increased with the doping of W. The IWO film with the lowest resistivity of 1.0×10 3 cm, highest carrier mobilityof 43.7 cm 2 V 1 s 1 and carrier concentration of 1.4×10 20 cm 3 was obtained at the content of 2.8 wt.%. The average optical transmittance from 300 nm to 900 nm reached 87.6%.展开更多
Plants are essential components of all ecosystems and play a critical role in environmental fate of nanoparticles. However, the toxicological impacts of nanoparticles on plants are not well documented. Titanium dioxid...Plants are essential components of all ecosystems and play a critical role in environmental fate of nanoparticles. However, the toxicological impacts of nanoparticles on plants are not well documented. Titanium dioxide nanoparticles(TiO2-NPs) are produced worldwide in large quantities for a wide range of purposes. In the present study, the uptake of TiO2-NPs by the aquatic plant Spirodela polyrrhiza and the consequent effects on the plant were evaluated.Initially, structural and morphological characteristics of the used TiO2-NPs were determined using XRD, SEM, TEM and BET techniques. As a result, an anatase structure with the average crystalline size of 8 nm was confirmed for the synthesized TiO2-NPs. Subsequently, entrance of TiO2-NPSto plant roots was verified by fluorescence microscopic images. Activity of a number of antioxidant enzymes, as well as, changes in growth parameters and photosynthetic pigment contents as physiological indices were assessed to investigate the effects of TiO2-NPs on S. polyrrhiza. The increasing concentration of TiO2-NPs led to the significant decrease in all of the growth parameters and changes in antioxidant enzyme activities. The activity of superoxide dismutase enhanced significantly by the increasing concentration of TiO2-NPs. Enhancement of superoxide dismutase activity could be explained as promoting antioxidant system to scavenging the reactive oxygen species. In contrast, the activity of peroxidase was notably decreased in the treated plants. Reduced peroxidase activity could be attributed to either direct effect of these particles on the molecular structure of the enzyme or plant defense system damage due to reactive oxygen species.展开更多
Influence of Zr contents on high-temperature magnetic performance of Sm(CoFeCuZr)(x=0.025,0.03,0.035,0.04) magnets were investigated.As x increases from 0.025 to 0.04,the temperature coefficient of intrinsic coercivit...Influence of Zr contents on high-temperature magnetic performance of Sm(CoFeCuZr)(x=0.025,0.03,0.035,0.04) magnets were investigated.As x increases from 0.025 to 0.04,the temperature coefficient of intrinsic coercivity(H) is optimized from-0.1673% K^(-1)to-0.1382% K^(-1)and the Hat 773 K gradually increases from 556.32 kA m^(-1)to 667 kA m^(-1).The microstructure and microchemistry of different Zr-content magnets were revealed by a transmission electron microscope equipped with EDS.The increasing Zr content induces that the average size of cells decreases from ~76 nm to ~56 nm and the weight fraction of 1:5 H cell boundary phase increases from ~25% to ~37% as well,resulting decreasing of the average Cu content at cell boundaries from 13.59 at% to ~8.52 at%.It is found that the Cu-lean characteristic at cell boundary phase is the reason that gives rise to higher magnetic properties at elevated temperatures for x=0.04 magnet.展开更多
在“双碳”愿景下,CCUS(carbon capture, utilization and storage)技术成为我国减少CO_(2)排放、保障能源安全和实现可持续发展的关键手段,而定量评价CO_(2)含量是CCUS技术中亟需解决的问题。本研究基于中子在地层中的扩散理论,分析了...在“双碳”愿景下,CCUS(carbon capture, utilization and storage)技术成为我国减少CO_(2)排放、保障能源安全和实现可持续发展的关键手段,而定量评价CO_(2)含量是CCUS技术中亟需解决的问题。本研究基于中子在地层中的扩散理论,分析了中子反应截面和减速长度等参数定量评价CO_(2)的方法,利用蒙特卡罗方法建立计算模型,模拟快中子在含CO_(2)和CH_(4)地层介质的作用过程,研究快中子散射截面、宏观俘获截面及减速长度等参数与CO_(2)和CH_(4)饱和度的变化关系,结果表明,在一定孔隙度条件下,减速长度相比快中子散射截面和宏观俘获截面在识别CO_(2)和CH_(4)的动态变化灵敏度更高,且区分CH_(4)和CO_(2)混合流体的响应更明显。研究结果为利用D-T中子源和多探测器测井仪定量评价CO_(2)仪器设计和数据处理方法奠定基础,对发展CCUS技术具有重要意义。展开更多
The Li_(2)O-Al_(2)O_(3)-SiO_(2) (LAS) glass-ceramics with low lithium content were prepared from spodumene mineral by melting method.XRD,DSC,and FTIR were used to study the crystallization process and structure of the...The Li_(2)O-Al_(2)O_(3)-SiO_(2) (LAS) glass-ceramics with low lithium content were prepared from spodumene mineral by melting method.XRD,DSC,and FTIR were used to study the crystallization process and structure of the samples.The results showed that the addition of Na_(2)O promoted the precipitation of β-quartz solid solution and its transformation to β-spodumene solid solution.Mechanical performance tests and FESEM indicated that the larger grain size and inhomogeneous grain dispersion caused by the increase of Na_(2)O content led to lower mechanical properties.In addition,low expansion glass-ceramics were prepared by an appropriate heat treatment according to DSC result,and when Na_(2)O content was in the range of 1.22 wt% to 2.41 wt%,the average coefficient of thermal expansion (CTE) (30-300 ℃) increased from-5.810 ×10^(-7 )to 5.322×10^(-7)℃^(-1).展开更多
The selection of appropriate materials for the transportation pipelines is of vital importance to ensure the safety operation in Carbon Capture,Utilisation and Storage(CCUS).To clarify the effects of Cr content in ste...The selection of appropriate materials for the transportation pipelines is of vital importance to ensure the safety operation in Carbon Capture,Utilisation and Storage(CCUS).To clarify the effects of Cr content in steel on the resistance against general and localised corrosion,electrochemistry methods combined with pH measurements and various surface analysis techniques were implemented on X65,1Cr,3Cr and 5Cr steel samples in a CO_(2)-saturated solution at 60°C and pH 6.6 during 192 h of immersion.Additionally,thermodynamic and kinetic analyses of the formation of the corrosion products on carbon steel and low-Cr steels were performed.The results show that the general corrosion resistance increased with rising Cr content without the presence of significant corrosion products formation.However,with the formation and development of the corrosion products,the general corrosion resistance reduced with the increase in Cr content.The formation of the compact crystalline FeCO3 on X65 and 1Cr steel surfaces offered superior general corrosion protection,while cannot provide enough localised corrosion protection.By contrast,the double-structural corrosion product layers on 3Cr and 5Cr steels notably suppressed the localised corrosion,but providing poor protection against general corrosion over long immersion periods.This study reveals the contributions of Cr content on general and localised corrosion resistance at various periods,providing references for material selection and evaluation in CO_(2) environments relevant for CCUS.展开更多
The influence of CaF2 content on the formation behavior of spinel inclusions in the Ni-Cr-V-alloyed special steel was presented. The spinel was not formed at CaF2 content lower than 10 wt%. However, it was formed at e...The influence of CaF2 content on the formation behavior of spinel inclusions in the Ni-Cr-V-alloyed special steel was presented. The spinel was not formed at CaF2 content lower than 10 wt%. However, it was formed at early stage when the CaF2 content was greater than 30 wt%, followed by a modification to the aluminosilicate-type inclusions. Because the slag was saturated by MgO, the activity of MgO was unity irrespective of CaF2 content in the slag. Thus, Mg was transferred from slag to metal phase. Mg transferred to molten steel reacted with Al2O3-rich inclusions to form MgO.Al2O3 spinel. However, the spinel inclusion was modified to aluminosilicate-type inclusions by the reaction with Si and Ca transferred from slag to molten steel about 2-3 h later.展开更多
In order to improve the cyclic stability of La-Mg-Ni system (Ce2Ni7-type) alloy electrode, small amount of Co was added in La0.75Mg0.25Ni3.5 alloy. The effect of Co on electrochemical performance and microstructure ...In order to improve the cyclic stability of La-Mg-Ni system (Ce2Ni7-type) alloy electrode, small amount of Co was added in La0.75Mg0.25Ni3.5 alloy. The effect of Co on electrochemical performance and microstructure of the alloys were investigated in detail. XRD results showed that the alloys had multiphase structure composed of (La, Mg)2Ni7, LaNi5 and small amount of LaNi2 phases. The discharge capacity of the alloys first increased and then decreased with increasing Co content. At a discharge current density of 900 mA/g, the HRD of the alloy electrodes increased from 81.3% (x=0) to 89.2 % (x=0.2), and then reduced to 87.8 % (x=0.6). After 60 charge/discharge cycles, the capacity retention rate of the alloys enhanced from 52.67% to 61.32%, and the capacity decay rate of the alloys decreased from 2.60 to 2.05 mAh/g per cycle with increasing Co content. The obtained results by XPS and XRD showed that the fundamental reasons for the capacity decay of the La-Mg-Ni system (Ce2Ni7-type) alloy electrodes were corrosion and oxidation as well as passivation of Mg and Lain alkaline solution.展开更多
The effect of B_(2)O_(3) content on the viscosity of SiO_(2)−MgO−FeO-based molten slag system was investigated using the rotating cylinder method.The evolution process of the melt structure under different contents of...The effect of B_(2)O_(3) content on the viscosity of SiO_(2)−MgO−FeO-based molten slag system was investigated using the rotating cylinder method.The evolution process of the melt structure under different contents of B_(2)O_(3) was comprehensively studied via FTIR spectroscopy and a model for calculating the degree of polymerization was developed.The results showed that the viscosity of the molten slag decreased with the addition of B_(2)O_(3),which had a slight effect when its content exceeded 3 wt.%.As the addition of B_(2)O_(3) increased from 0 to 4 wt.%,the break temperature of the slags decreased from 1152 to 1050℃ and the apparent activation energy decreased from 157.90 to 141.84 kJ/mol.The addition of B_(2)O_(3) to the molten slag destroyed the chain silicate structure to form a more cyclic borosilicate structure.The Urbain model was improved to calculate the viscosity of the SiO_(2)−MgO−FeO-based slags,and the values were in good agreement with the experimentally measured values.展开更多
There are a large number of abandoned coalmines in China,and most of them are located around major coal-fired power stations,which are the largest emission sources of carbon dioxide(CO2).Considering the injection of C...There are a large number of abandoned coalmines in China,and most of them are located around major coal-fired power stations,which are the largest emission sources of carbon dioxide(CO2).Considering the injection of CO2 into abandoned coalmines,which are usually in the flooded condition,it is necessary to investigate the effect of CO2-water-coal interaction on minerals and pore structures at different pressures,temperatures and times.It reveals that the CO2-water-coal interaction can significantly improve the solubility of Ca,S,Mg,K,Si,Al,Fe and Na.By comparing the mineral content and pore structure before and after CO2-water-coal interaction,quartz and kaolinite were found to be the main secondary minerals,which increased in all samples.The structures of micropores and mesopores in the range of 1.5-8 nm were changed obviously.Specific surface areas and pore volumes first increased and then decreased with pressure and time,while both increased with temperature.By using the Frenkel-Halsey-Hill model,the fractal dimensions of all samples were analyzed based on D(s1)and D(s2),which reflected the co mplexities of the pore surface and pore volume,respectively.The re sults show that fractal dimensions had very weak positive correlations with the carbon content.D(s1)had a positive correlation with the quartz and kaolinite contents,while D(s2)had a negative correlation with the quartz and kaolinite contents.展开更多
Ti-stabilized 321 stainless steel was prepared using an electric arc furnace, argon oxygen decarburization (AOD) furnace, ladle furnace (LF), and continuous casting processes. In addition, the effect of refining proce...Ti-stabilized 321 stainless steel was prepared using an electric arc furnace, argon oxygen decarburization (AOD) furnace, ladle furnace (LF), and continuous casting processes. In addition, the effect of refining process and utilization of different slags on the evolution of inclusions, titanium yield, and oxygen content was systematically investigated by experimental and thermodynamic analysis. The results reveal that the total oxygen content (TO) and inclusion density decreased during the refining process. The spherical CaO–SiO2–Al2O3–MgO inclusions existed in the 321 stainless steel after the AOD process. Moreover, prior to the Ti addition, the spherical CaO–Al2O3–MgO–SiO2 inclusions were observed during LF refining pro-cess. However, Ti addition resulted in multilayer CaO–Al2O3–MgO–TiOx inclusions. Two different samples were prepared by conventional CaO–Al2O3-based slag (Heat-1) and -TiO2-rich CaO–Al2O3-based slag (Heat-2). The statistical analysis revealed that the density of inclusions and the -TiOx content in CaO–Al2O3–MgO–TiOx inclusions found in Heat-2 sample are much lower than those in the Heat-1 sample. Furthermore, the TO content and Ti yield during the LF refining process were controlled by using -TiO2-rich calcium aluminate synthetic slag. These results were consistent with the ion–molecule coexist-ence theory and FactSage?7.2 software calculations. When -TiO2-rich CaO–Al2O3-based slag was used, the -TiO2 activity of the slag increased, and the equilibrium oxygen content significantly decreased from the AOD to LF processes. Therefore, the higher -TiO2 activity of slag and lower equilibrium oxygen content suppressed the undesirable reactions between Ti and O.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51641206)Shandong Natural Science Foundation Project(No.ZR2015EM013)+1 种基金Special Funds for Independent Innovation and Transformation of Achievements in Shandong Province(No.2014CGZH0911)National Key R&D Program of China(No.2016YFB0100508)
文摘Li4Ti5012 (LTO) with rich R-TiO2 (17.06, 23.69, and 34.42 wt%), namely, R-TiO2@Li4Ti5O12 composites, were synthesized using the hydrothermal method and tetrabutyl titanate (TBT) as the precursor. Rietveld refinement of X-ray diffraction (XRD) results show that the proportion of Li occupying 16d sites is extraordinary low and the lattice constants of LTO and R-TiO2 change with the ritanium dioxide content. EIS measurements showed that with in creasing R-TiO2 content, both its charge transfer impedance (Rct) and lithium ion diffusion coefficient (DLi) decreased. The changes of Rct and DLi caused by the increase of titanium dioxide content have synergic-antagonistic effects on the rate and cycle properties of Li4Ti5012. The rate performance is positively related to DLi, while the cycle property is negatively correlated with Rct, indicati ng that the rate performs nee is mainly related to DLi, while Rct more significantly affects the cycle performance. LTO-RT-17.06% exhibited excellent rate properties, especially under a high current density (5.0 C, 132.5 mAh/g) and LTO-RT-34.42% showed superior long-term cycle performance (0.012% capacity loss per cycle) compared to that of LTO-RT-17.06% and LTO-RT-23.69%.
基金Sponsored by Key National Science and Technology Specific Projects of China(2008ZX05017-002)
文摘The corrosion behavior of the 110S tube steel in the environments of high H2 S and CO2 content was inves- tigated by using a high-temperature and high-pressure autoclave, and the corrosion products were characterized by scanning electron microscopy and X ray diffraction technique. The results showed that all of the corrosion products under the test conditions mainly consisted of different types of iron sulfides such as pyrrhotite of Fe0.95 S, mackinaw- ite of FeS0.9, Fe0. 985 S and FeS, and the absence of iron carbonate in the corrosion scales indicated that the corrosion process was controlled by H2S corrosion. The corrosion rate of the 110S steel decreased firstly and then increased with the rising of temperature. The minimum corrosion rate occurred at 110 ℃. When the H2 S partial pressure PH2s below 9 MPa, the corrosion rate declined with the increase of PH2s. While over 9 MPa, a higher PH2s resulted in a faster corrosion process. With the increasing of the CO2 partial pressure, the corrosion rate had an increasing trend. The morphologies of the corrosion scales had a good accordance with the corrosion rates.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19080304)the Agricultural Science and Technology Innovation of Sanya, China (2015KJ04)+4 种基金the Natural Science Foundation of Hainan Province, China (20164179, 2016CXTD015)the Technology Research, Development and Promotion Program of Hainan Province, China (ZDXM2015102)the Hainan Provincial Department of Science and Technology, China (ZDKJ2016021)the National Natural Science Foundation of China (41601466)the Youth Innovation Promotion Association of Chinese Academy of Sciences (CAS) (2017085)
文摘Leaf chlorophyll content(LCC)is an important physiological indicator of the actual health status of individual plants.An accurate estimation of LCC can therefore provide valuable information for precision field management.Red-edge information from hyperspectral data has been widely used to estimate crop LCC.However,after the advent of red-edge bands in satellite imagery,no systematic evaluation of the performance of satellite data has been conducted.Toward this end,we analyze herein the performance of winter wheat LCC retrieval of currant and forthcoming satellites(RapidEye,Sentinel-2 and EnMAP)and their new red-edge bands by using partial least squares regression(PLSR)and a vegetation-indexbased approach.These satellite spectral data were obtained by resampling ground-measured hyperspectral data under various field conditions and according to specific spectral response functions and spectral resolution.The results showed:1)This study confirmed that RapidEye,Sentinel-2 and EnMAP data are suitable for winter wheat LCC retrieval.For the PLSR approach,Sentinel-2 data provided more accurate estimates of LCC(R2=0.755,0.844,0.805 for 2002,2010,and 2002+2010)than do RapidEye data(R2=0.689,0.710,0.707 for 2002,2010,and 2002+2010)and EnMAP data(R2=0.735,0.867,0.771 for 2002,2010,and 2002+2010).For index-based approaches,the MERIS terrestrial chlorophyll index,which is a vegetation index with two red-edge bands,was the most sensitive and robust index for LCC for both the Sentinel-2 and EnMAP data(R2≥0.628),and the indices(NDRE1,SRRE1 and CIRE1)with a single red-edge band were the most sensitive and robust indices for the RapidEye data(R2≥0.420);2)According to the analysis of the effect of the wavelength and number of used red-edge spectral bands on LCC retrieval,the short-wavelength red-edge bands(from 699 to 734 nm)provided more accurate predictions when using the PLSR approach,whereas the long-wavelength red-edge bands(740 to 783 nm)gave more accurate predictions when using the vegetation indice(VI)approach.In addition,the prediction accuracy of RapidEye,Sentinel-2 and EnMAP data was improved gradually because of more number of red-edge bands and higher spectral resolution;VI regression models that contain a single or multiple red-edge bands provided more accurate predictions of LCC than those without red-edge bands,but for normalized difference vegetation index(NDVI)-,simple ratio(SR)-and chlorophyll index(CI)-like index,two red-edge bands index didn’t significantly improve the predictive accuracy of LCC than those indices with a single red-edge band.Although satellite data with higher spectral resolution and a greater number of red-edge bands marginally improve the accuracy of estimates of crop LCC,the level of this improvement remains insufficient because of higher spectral resolution,which results in a worse signal-to-noise ratio.The results of this study are helpful to accurately monitor LCC of winter wheat in large-area and provide some valuable advice for design of red-edge spectral bands of satellite sensor in future.
基金Project(2007AA03Z0455) supported by the National High-Technology Research and Development Program of ChinaProject(BE2009168) supported by the Natural Science Foundation of Jiangsu Province in ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institution,China
文摘The effects of B2O3 addition on both the sintering behavior and microwave dielectric properties of CaO-B2O3-SiO2 (CBS) glass ceramics were investigated by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results show that the increasing amount of B203 causes the increase of the contents of [BO3], [BO4] and [SiO4], which deduces the increase of CaB204 and a-SiO2 and the decrease of CaSiO3 correspondingly. No new phase is observed throughout the entire experiments. A bulk density of 2.54 g/cm3, a thermal expansion coefficient value of 11.95× 10-6 ℃-1 (20-500℃), a dielectric constant er value of 6.42 and a dielectric loss tanδ value of 0.000 9 (measured at 9.7 GHz) are obtained for CBS glass ceramics containing 35%-B203 (mass fraction) sintered at 850 ℃ for 15 min.
基金Project supported by Governor's Foundation of Guizhou Province (2004-07)
文摘To eliminate thermal stress and cracks in the process of laser cladding, a kind of bioceramic coating with gradient compositional design was prepared on the surface of Ti alloy by using wide-band laser cladding. And effect of Y2O3 content on gradient bioceramic composite coating was studied. The experimental results indicate that adding rare earth can refine grain. Different rare earth contents affect formation of HA and β-TCP in bioceramic coating. When the content of rare earth ranges from 0.4% to 0.6%, the active extent of rare earth in synthesizing HA and β-TCP is the best, which indicates that “monosodium glutamate” effect of rare earth plays a dominant role. However, when rare earth content is up to 0.8%, the amount of synthesizing HA and β-TCP in coating conversely goes down, which demonstrates that rare earth gradually losts its catalysis in manufacturing HA and β-TCP.
基金financially supported by the National Natural Science Foundation of China (No. 50902006)the National High Technology Development 863 Program of China (No. 2009AA03Z428)National Student Innovative Experiment Plan
文摘The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigated. Results showed that both the carrier concentration and carrier mobility were increased with the doping of W. The IWO film with the lowest resistivity of 1.0×10 3 cm, highest carrier mobilityof 43.7 cm 2 V 1 s 1 and carrier concentration of 1.4×10 20 cm 3 was obtained at the content of 2.8 wt.%. The average optical transmittance from 300 nm to 900 nm reached 87.6%.
文摘Plants are essential components of all ecosystems and play a critical role in environmental fate of nanoparticles. However, the toxicological impacts of nanoparticles on plants are not well documented. Titanium dioxide nanoparticles(TiO2-NPs) are produced worldwide in large quantities for a wide range of purposes. In the present study, the uptake of TiO2-NPs by the aquatic plant Spirodela polyrrhiza and the consequent effects on the plant were evaluated.Initially, structural and morphological characteristics of the used TiO2-NPs were determined using XRD, SEM, TEM and BET techniques. As a result, an anatase structure with the average crystalline size of 8 nm was confirmed for the synthesized TiO2-NPs. Subsequently, entrance of TiO2-NPSto plant roots was verified by fluorescence microscopic images. Activity of a number of antioxidant enzymes, as well as, changes in growth parameters and photosynthetic pigment contents as physiological indices were assessed to investigate the effects of TiO2-NPs on S. polyrrhiza. The increasing concentration of TiO2-NPs led to the significant decrease in all of the growth parameters and changes in antioxidant enzyme activities. The activity of superoxide dismutase enhanced significantly by the increasing concentration of TiO2-NPs. Enhancement of superoxide dismutase activity could be explained as promoting antioxidant system to scavenging the reactive oxygen species. In contrast, the activity of peroxidase was notably decreased in the treated plants. Reduced peroxidase activity could be attributed to either direct effect of these particles on the molecular structure of the enzyme or plant defense system damage due to reactive oxygen species.
基金partially supported by the National Natural Science Foundation of China (No. 51871063)the Key Technology Research and Development Program of Shandong (No. 2019JZZY020210)。
文摘Influence of Zr contents on high-temperature magnetic performance of Sm(CoFeCuZr)(x=0.025,0.03,0.035,0.04) magnets were investigated.As x increases from 0.025 to 0.04,the temperature coefficient of intrinsic coercivity(H) is optimized from-0.1673% K^(-1)to-0.1382% K^(-1)and the Hat 773 K gradually increases from 556.32 kA m^(-1)to 667 kA m^(-1).The microstructure and microchemistry of different Zr-content magnets were revealed by a transmission electron microscope equipped with EDS.The increasing Zr content induces that the average size of cells decreases from ~76 nm to ~56 nm and the weight fraction of 1:5 H cell boundary phase increases from ~25% to ~37% as well,resulting decreasing of the average Cu content at cell boundaries from 13.59 at% to ~8.52 at%.It is found that the Cu-lean characteristic at cell boundary phase is the reason that gives rise to higher magnetic properties at elevated temperatures for x=0.04 magnet.
文摘在“双碳”愿景下,CCUS(carbon capture, utilization and storage)技术成为我国减少CO_(2)排放、保障能源安全和实现可持续发展的关键手段,而定量评价CO_(2)含量是CCUS技术中亟需解决的问题。本研究基于中子在地层中的扩散理论,分析了中子反应截面和减速长度等参数定量评价CO_(2)的方法,利用蒙特卡罗方法建立计算模型,模拟快中子在含CO_(2)和CH_(4)地层介质的作用过程,研究快中子散射截面、宏观俘获截面及减速长度等参数与CO_(2)和CH_(4)饱和度的变化关系,结果表明,在一定孔隙度条件下,减速长度相比快中子散射截面和宏观俘获截面在识别CO_(2)和CH_(4)的动态变化灵敏度更高,且区分CH_(4)和CO_(2)混合流体的响应更明显。研究结果为利用D-T中子源和多探测器测井仪定量评价CO_(2)仪器设计和数据处理方法奠定基础,对发展CCUS技术具有重要意义。
基金Funded by Research Fund of Center for Materials Research and Analysis,Wuhan University of Technology (No.2018KFJJ11)。
文摘The Li_(2)O-Al_(2)O_(3)-SiO_(2) (LAS) glass-ceramics with low lithium content were prepared from spodumene mineral by melting method.XRD,DSC,and FTIR were used to study the crystallization process and structure of the samples.The results showed that the addition of Na_(2)O promoted the precipitation of β-quartz solid solution and its transformation to β-spodumene solid solution.Mechanical performance tests and FESEM indicated that the larger grain size and inhomogeneous grain dispersion caused by the increase of Na_(2)O content led to lower mechanical properties.In addition,low expansion glass-ceramics were prepared by an appropriate heat treatment according to DSC result,and when Na_(2)O content was in the range of 1.22 wt% to 2.41 wt%,the average coefficient of thermal expansion (CTE) (30-300 ℃) increased from-5.810 ×10^(-7 )to 5.322×10^(-7)℃^(-1).
基金supported by the National Key R&D Program of China(2021YFB4001601)the Natural Science Foundation of Shandong Province(ZR2021QE036)+3 种基金the Fundamental Research Funds for the Central Universities(22CX06052A)the Postgraduate Innovation Funding Project of China University of Petroleum(East China)(YCX2020070)the Fundamental Research Funds for the Central Universities(20CX02405A)the Development Fund of Shandong Key Laboratory of Oil&Gas Storage and Transportation Safety.
文摘The selection of appropriate materials for the transportation pipelines is of vital importance to ensure the safety operation in Carbon Capture,Utilisation and Storage(CCUS).To clarify the effects of Cr content in steel on the resistance against general and localised corrosion,electrochemistry methods combined with pH measurements and various surface analysis techniques were implemented on X65,1Cr,3Cr and 5Cr steel samples in a CO_(2)-saturated solution at 60°C and pH 6.6 during 192 h of immersion.Additionally,thermodynamic and kinetic analyses of the formation of the corrosion products on carbon steel and low-Cr steels were performed.The results show that the general corrosion resistance increased with rising Cr content without the presence of significant corrosion products formation.However,with the formation and development of the corrosion products,the general corrosion resistance reduced with the increase in Cr content.The formation of the compact crystalline FeCO3 on X65 and 1Cr steel surfaces offered superior general corrosion protection,while cannot provide enough localised corrosion protection.By contrast,the double-structural corrosion product layers on 3Cr and 5Cr steels notably suppressed the localised corrosion,but providing poor protection against general corrosion over long immersion periods.This study reveals the contributions of Cr content on general and localised corrosion resistance at various periods,providing references for material selection and evaluation in CO_(2) environments relevant for CCUS.
文摘The influence of CaF2 content on the formation behavior of spinel inclusions in the Ni-Cr-V-alloyed special steel was presented. The spinel was not formed at CaF2 content lower than 10 wt%. However, it was formed at early stage when the CaF2 content was greater than 30 wt%, followed by a modification to the aluminosilicate-type inclusions. Because the slag was saturated by MgO, the activity of MgO was unity irrespective of CaF2 content in the slag. Thus, Mg was transferred from slag to metal phase. Mg transferred to molten steel reacted with Al2O3-rich inclusions to form MgO.Al2O3 spinel. However, the spinel inclusion was modified to aluminosilicate-type inclusions by the reaction with Si and Ca transferred from slag to molten steel about 2-3 h later.
基金the National Natural Science Foundation of China (50701011)Natural Science Foundation of Inner Mongolia, China (200711020703)Science and Technology Planned Project of Inner Mongolia, China (20050205)
文摘In order to improve the cyclic stability of La-Mg-Ni system (Ce2Ni7-type) alloy electrode, small amount of Co was added in La0.75Mg0.25Ni3.5 alloy. The effect of Co on electrochemical performance and microstructure of the alloys were investigated in detail. XRD results showed that the alloys had multiphase structure composed of (La, Mg)2Ni7, LaNi5 and small amount of LaNi2 phases. The discharge capacity of the alloys first increased and then decreased with increasing Co content. At a discharge current density of 900 mA/g, the HRD of the alloy electrodes increased from 81.3% (x=0) to 89.2 % (x=0.2), and then reduced to 87.8 % (x=0.6). After 60 charge/discharge cycles, the capacity retention rate of the alloys enhanced from 52.67% to 61.32%, and the capacity decay rate of the alloys decreased from 2.60 to 2.05 mAh/g per cycle with increasing Co content. The obtained results by XPS and XRD showed that the fundamental reasons for the capacity decay of the La-Mg-Ni system (Ce2Ni7-type) alloy electrodes were corrosion and oxidation as well as passivation of Mg and Lain alkaline solution.
基金financially supported by the National Natural Science Foundation of China (No.51774224)。
文摘The effect of B_(2)O_(3) content on the viscosity of SiO_(2)−MgO−FeO-based molten slag system was investigated using the rotating cylinder method.The evolution process of the melt structure under different contents of B_(2)O_(3) was comprehensively studied via FTIR spectroscopy and a model for calculating the degree of polymerization was developed.The results showed that the viscosity of the molten slag decreased with the addition of B_(2)O_(3),which had a slight effect when its content exceeded 3 wt.%.As the addition of B_(2)O_(3) increased from 0 to 4 wt.%,the break temperature of the slags decreased from 1152 to 1050℃ and the apparent activation energy decreased from 157.90 to 141.84 kJ/mol.The addition of B_(2)O_(3) to the molten slag destroyed the chain silicate structure to form a more cyclic borosilicate structure.The Urbain model was improved to calculate the viscosity of the SiO_(2)−MgO−FeO-based slags,and the values were in good agreement with the experimentally measured values.
基金The National Key Research and Development Plan(Grant No.2016YFC0501104)the National Natural Science Foundation of China(Grant Nos.51522903 and 51479094)。
文摘There are a large number of abandoned coalmines in China,and most of them are located around major coal-fired power stations,which are the largest emission sources of carbon dioxide(CO2).Considering the injection of CO2 into abandoned coalmines,which are usually in the flooded condition,it is necessary to investigate the effect of CO2-water-coal interaction on minerals and pore structures at different pressures,temperatures and times.It reveals that the CO2-water-coal interaction can significantly improve the solubility of Ca,S,Mg,K,Si,Al,Fe and Na.By comparing the mineral content and pore structure before and after CO2-water-coal interaction,quartz and kaolinite were found to be the main secondary minerals,which increased in all samples.The structures of micropores and mesopores in the range of 1.5-8 nm were changed obviously.Specific surface areas and pore volumes first increased and then decreased with pressure and time,while both increased with temperature.By using the Frenkel-Halsey-Hill model,the fractal dimensions of all samples were analyzed based on D(s1)and D(s2),which reflected the co mplexities of the pore surface and pore volume,respectively.The re sults show that fractal dimensions had very weak positive correlations with the carbon content.D(s1)had a positive correlation with the quartz and kaolinite contents,while D(s2)had a negative correlation with the quartz and kaolinite contents.
基金The authors gratcfully acknowledge the sup-port of the National Natural Science Foundation of China(Grant No.51374020)the State Key Laboratory of Advanced Metallurgy at theUniversity of Science and Technology Beijing(USTB)the JiuquanIron and Steel Group Corporation.
文摘Ti-stabilized 321 stainless steel was prepared using an electric arc furnace, argon oxygen decarburization (AOD) furnace, ladle furnace (LF), and continuous casting processes. In addition, the effect of refining process and utilization of different slags on the evolution of inclusions, titanium yield, and oxygen content was systematically investigated by experimental and thermodynamic analysis. The results reveal that the total oxygen content (TO) and inclusion density decreased during the refining process. The spherical CaO–SiO2–Al2O3–MgO inclusions existed in the 321 stainless steel after the AOD process. Moreover, prior to the Ti addition, the spherical CaO–Al2O3–MgO–SiO2 inclusions were observed during LF refining pro-cess. However, Ti addition resulted in multilayer CaO–Al2O3–MgO–TiOx inclusions. Two different samples were prepared by conventional CaO–Al2O3-based slag (Heat-1) and -TiO2-rich CaO–Al2O3-based slag (Heat-2). The statistical analysis revealed that the density of inclusions and the -TiOx content in CaO–Al2O3–MgO–TiOx inclusions found in Heat-2 sample are much lower than those in the Heat-1 sample. Furthermore, the TO content and Ti yield during the LF refining process were controlled by using -TiO2-rich calcium aluminate synthetic slag. These results were consistent with the ion–molecule coexist-ence theory and FactSage?7.2 software calculations. When -TiO2-rich CaO–Al2O3-based slag was used, the -TiO2 activity of the slag increased, and the equilibrium oxygen content significantly decreased from the AOD to LF processes. Therefore, the higher -TiO2 activity of slag and lower equilibrium oxygen content suppressed the undesirable reactions between Ti and O.