期刊文献+
共找到1,346篇文章
< 1 2 68 >
每页显示 20 50 100
一种改进的Faster R-CNN遥感图像多目标检测模型研究 被引量:1
1
作者 苗茹 李祎 +3 位作者 周珂 张俨娜 常然然 孟更 《计算机工程》 北大核心 2025年第8期292-304,共13页
针对遥感图像背景复杂、目标种类多和尺度差异大所造成的目标漏检和误检问题,提出一种改进Faster R-CNN多目标检测模型。首先,采用Swin Transformer来替代ResNet 50骨干网络,增强模型特征提取能力;其次,添加平衡特征金字塔(BFP)模块融... 针对遥感图像背景复杂、目标种类多和尺度差异大所造成的目标漏检和误检问题,提出一种改进Faster R-CNN多目标检测模型。首先,采用Swin Transformer来替代ResNet 50骨干网络,增强模型特征提取能力;其次,添加平衡特征金字塔(BFP)模块融合浅层和高层语义信息,进一步加强特征融合效果;最后,在分类和回归分支中,添加动态权重机制,促进网络在训练过程中更关注高质量候选框,提高目标定位和分类的精确度。在RSOD数据集上的实验结果表明,所提模型相较于Faster R-CNN模型每秒浮点运算次数(FLOPs)大幅度减少,并且模型的mAP@0.5∶0.95提高了10.7百分点,平均召回率提高10.6百分点。相较于其他主流检测模型,所提模型在降低漏检率的同时,取得了更高的精度,能显著提高复杂背景下遥感图像的检测精度。 展开更多
关键词 遥感图像 多目标检测 Faster r-cnn Swin Transformer模块 平衡特征金字塔 动态权重机制
在线阅读 下载PDF
改进Faster-R-CNN的输送带表面损伤检测 被引量:2
2
作者 袁媛 赵鹏举 +1 位作者 孟文俊 王航 《机械设计与制造》 北大核心 2025年第3期199-203,共5页
针对输送带在长期运转过程中易出现划伤、撕裂和破裂的损伤问题,提出了一种改进Faster-R-CNN的输送带表面损伤检测方法。该检测方法在Faster-R-CNN神经网络的基础上,首选MobileNet网络进行图像轻量化特征提取,然后在RPN模块中引入ancho... 针对输送带在长期运转过程中易出现划伤、撕裂和破裂的损伤问题,提出了一种改进Faster-R-CNN的输送带表面损伤检测方法。该检测方法在Faster-R-CNN神经网络的基础上,首选MobileNet网络进行图像轻量化特征提取,然后在RPN模块中引入anchor原始特征与卷积相融合的背景分类,以加强输送带的损伤特征信息;最后构建输送带表面损伤的数据集进行数据试验,并分别采用VGG-19,ResNet-18骨干网络进行试验对比,结果表明改进的Faster-R-CNN的算法,针对输送带划伤、撕裂和破损的损伤状态均能够有效识别。 展开更多
关键词 输送带 损伤检测 Faster-r-cnn MobileNet
在线阅读 下载PDF
基于Faster R-CNN的作物生物密度智能识别方法 被引量:1
3
作者 李修华 李倩 +2 位作者 张瀚文 丁璐 王泽平 《生物工程学报》 北大核心 2025年第10期3828-3839,共12页
准确获取大田作物数量和密度不仅是水肥管理按需投入的关键,也是保障作物产量和品质的关键。无人机(unmanned aerial vehicle,UAV)航拍可以快速且大面积地获取大田作物的分布图像信息,但是单一类型密集目标的准确识别对于大多数识别算... 准确获取大田作物数量和密度不仅是水肥管理按需投入的关键,也是保障作物产量和品质的关键。无人机(unmanned aerial vehicle,UAV)航拍可以快速且大面积地获取大田作物的分布图像信息,但是单一类型密集目标的准确识别对于大多数识别算法来说都是一个巨大的挑战。本研究以香蕉苗为例,通过无人机高空航拍香蕉园的图像,研究密集目标高效识别方法。本研究提出了一种“裁-识-拼”的策略,构建了一个基于改进的Faster R-CNN算法的计数方法。该方法先将包含高密集目标的图像按不同尺寸(模拟不同飞行高度)裁剪成大量图像瓦片,并采用对比度限制自适应直方图均衡化(contrast limited adaptive histogram equalization,CLAHE)算法提高图像质量,构建了包含36000张图像瓦片的香蕉苗数据集;然后采用经过参数优化的Faster R-CNN网络训练香蕉苗识别模型;最后将识别结果进行反拼接,并设计了一种边界去重算法,对最终的计数结果进行校正,以减少图像裁剪引起的香蕉苗重复识别。结果表明,经过参数优化的Faster R-CNN对不同尺寸的香蕉图像数据集的识别精度最高达到了0.99;去重算法可以将针对航拍原始图像的平均计数误差从1.60%降低到0.60%,香蕉苗的平均计数准确率达到99.4%。本研究提出的方法有效解决了高分辨率航拍图像中密集小目标识别难题,为精准农业中的作物密度智能监测提供了高效可靠的技术支撑。 展开更多
关键词 果园计数 香蕉 Faster r-cnn 深度学习 去重
原文传递
基于改进Faster R-CNN的焊缝缺陷检测方法 被引量:3
4
作者 陈利琼 梅后金 +1 位作者 胡洪宣 赵奎 《科学技术与工程》 北大核心 2025年第5期2027-2033,共7页
管道内部的焊缝缺陷是导致管道发生泄漏和破裂事故的主要原因,而X射线能够有效地检测到这些缺陷。然而,焊缝缺陷存在种类多、尺寸小和背景复杂等问题,影响检测精度。针对目前基于深度学习的焊缝缺陷检测模型对图像复杂背景和光照变化的... 管道内部的焊缝缺陷是导致管道发生泄漏和破裂事故的主要原因,而X射线能够有效地检测到这些缺陷。然而,焊缝缺陷存在种类多、尺寸小和背景复杂等问题,影响检测精度。针对目前基于深度学习的焊缝缺陷检测模型对图像复杂背景和光照变化的适应性不足、小目标检测效果不佳的问题。在快速区域卷积神经网络(faster region convolutional neural networks,Faster R-CNN)网络的主干网络上添加通道注意力机制和对残差块结构进行修改,并采用ROI Align替换传统Faster R-CNN网络的ROI Pooling的改进模型。实验结果表明:改进后的Faster R-CNN网络模型与原算法相比,平均精度值(mean average precision,mAP)和F_(1)分别比原算法提升了15.82%和16.44%,能够满足焊缝缺陷检测的高精度要求,具有重要的理论意义与良好的工程应用前景。 展开更多
关键词 深度学习 缺陷检测 X射线图像 Faster r-cnn
在线阅读 下载PDF
改进Faster R-CNN的钢材表面缺陷检测 被引量:3
5
作者 冷岳峰 刘正 +1 位作者 徐宝祎 李志轩 《机械科学与技术》 北大核心 2025年第1期75-83,共9页
钢材表面缺陷检测是工业生产中至关重要的一项检测工作,针对钢材表面缺陷检测中漏检以及对于细小缺陷检测精度不佳等问题,提出了一种改进Faster R-CNN算法。在FPN(Feature pyramid networks)与RPN(Region proposal network)之间引入特... 钢材表面缺陷检测是工业生产中至关重要的一项检测工作,针对钢材表面缺陷检测中漏检以及对于细小缺陷检测精度不佳等问题,提出了一种改进Faster R-CNN算法。在FPN(Feature pyramid networks)与RPN(Region proposal network)之间引入特征融合模块与轻量化通道注意力模块,增加模型对精细特征的捕捉能力。改进模型在NEU-DET数据集上的实验结果显示,最终mAP(Mean average precision,记为m_(AP))值为80.2%,比原始模型提高了12.6%,FPS提高了40.9%。该算法能够有效提升钢材表面缺陷的检测精度,为钢材表面缺陷自动检测提供参考。 展开更多
关键词 缺陷检测 特征融合 通道注意力机制 改进Faster r-cnn算法
在线阅读 下载PDF
基于Faster R-CNN和Mask R-CNN的滑坡自动识别研究 被引量:3
6
作者 于宪煜 杨森 《大地测量与地球动力学》 北大核心 2025年第1期1-4,12,共5页
基于高分一号影像,以三峡库区库首段为例,通过目视解译出160个滑坡样本,按照9∶1比例分为训练样本和验证样本,分别利用Faster R-CNN和Mask R-CNN算法构建滑坡自动识别模型。为进一步对比分析不同样本比例下两种模型的性能,分别采用8∶2... 基于高分一号影像,以三峡库区库首段为例,通过目视解译出160个滑坡样本,按照9∶1比例分为训练样本和验证样本,分别利用Faster R-CNN和Mask R-CNN算法构建滑坡自动识别模型。为进一步对比分析不同样本比例下两种模型的性能,分别采用8∶2、7∶3、6∶4的样本比例进行计算。研究结果表明,Mask R-CNN模型识别结果准确率、召回率和F 1分数等3项指标均优于Faster R-CNN;且经过交叉验证,证明Mask R-CNN模型的性能更为稳定。 展开更多
关键词 深度学习 滑坡识别 Mask r-cnn Faster r-cnn 交叉验证
在线阅读 下载PDF
基于改进Faster R-CNN的机场跑道道面裂缝检测方法 被引量:2
7
作者 张璐 高培伟 +1 位作者 张芊伊 李国庆 《粘接》 2025年第5期159-162,共4页
民航运输在中国交通体系中占据着至关重要的地位。随着机场使用年限的延长,道面损伤问题日益严重,这对飞机滑行与起降的安全构成了重大威胁。为了降低飞机在起降过程的风险性,提出了一种基于Faster R-CNN的改进检测方法。该检测方法综... 民航运输在中国交通体系中占据着至关重要的地位。随着机场使用年限的延长,道面损伤问题日益严重,这对飞机滑行与起降的安全构成了重大威胁。为了降低飞机在起降过程的风险性,提出了一种基于Faster R-CNN的改进检测方法。该检测方法综合利用了GC-ASFF模块、CIoU指标、改进损失函数和迁移学习等深度学习和目标检测技术,实现了对道面裂缝的准确检测,以便利用识别到的道面裂缝特征参数来对当前道面安全状况进行评估。试验结果表明,改进后的模型识别精度较高,综合性能较优,对于飞机跑道道面损伤能够进行精准识别和检测,具有较高的可靠性。 展开更多
关键词 裂缝检测 Faster r-cnn ASFF 交并比 损失函数
在线阅读 下载PDF
基于改进Mask R-CNN的航空铸件智能检测技术研究
8
作者 张祥春 彭文胜 +4 位作者 楚峻溢 曾照洋 王振宇 魏明贤 徐然 《航空制造技术》 北大核心 2025年第23期26-33,共8页
针对航空产品研制生产过程中由于质量缺陷产生原因复杂、缺陷特征种类多、检测要求高而缺少有效智能检测方法的问题,首先通过系统梳理航空装备智能检测技术研究现状,总结了面向此应用场景和针对具体缺陷特征开展智能检测方法研究的思路... 针对航空产品研制生产过程中由于质量缺陷产生原因复杂、缺陷特征种类多、检测要求高而缺少有效智能检测方法的问题,首先通过系统梳理航空装备智能检测技术研究现状,总结了面向此应用场景和针对具体缺陷特征开展智能检测方法研究的思路和实施途径;其次,设计了融合全局特征金字塔网络的Mask R-CNN改进算法,并面向缺陷特征复杂和检测要求比较高的航空铸件,利用剪切、翻转、Overlap切图和Mosaic等数据增广技术构建了航空铸件数字射线检测缺陷特征数据集;最后利用改进算法及构建的数据集对航空铸件中的疏松、裂纹及高密度夹杂3类缺陷进行测试与验证试验。试验结果表明,所提改进算法的检测精度达93.25%,召回率达96.51%,具有良好检测效果。 展开更多
关键词 深度学习 智能检测 航空铸件 Mask r-cnn 全局特征金字塔网络 数据增广
在线阅读 下载PDF
基于改进Mask R-CNN的低空遥感实例分割算法
9
作者 李冰锋 王光耀 崔立志 《兵器装备工程学报》 北大核心 2025年第2期168-176,共9页
针对遥感领域图像目标繁杂、检测和分割精度不高的问题,提出一种改进Mask R-CNN算法。设计PMResNet-50结构作为主干网络,其中金字塔挤压注意模块可以促进局部和全局通道注意之间的信息交互作用,多层次特征聚合模块可以提高PMResNet-50... 针对遥感领域图像目标繁杂、检测和分割精度不高的问题,提出一种改进Mask R-CNN算法。设计PMResNet-50结构作为主干网络,其中金字塔挤压注意模块可以促进局部和全局通道注意之间的信息交互作用,多层次特征聚合模块可以提高PMResNet-50对输入通道语义信息的高效聚合作用。在RoI Align前引入自校准卷积模块来扩大卷积层的感受野大小并对边界框和掩码框执行校准操作。在分割分支使用掩码预测平衡损失函数,对每个类别的正负样本梯度进行平衡,实现对损失梯度的平滑降低处理。在自建低空遥感数据集和iSAID-Reduce100数据集上进行测试,实验结果表明:改进后的算法在自建数据集上box AP和mask AP分别提升17.9%和15.0%,在iSAID-Reduce100数据集上box AP和mask AP达到49.62%和50.27%,该算法很好地完成了对遥感目标的检测和分割。 展开更多
关键词 深度学习 图像处理 遥感图像 实例分割 改进Mask r-cnn算法 ResNet-50
在线阅读 下载PDF
基于改进Mask R-CNN的建筑屋面光伏利用潜力评估研究——以长春市工业厂房为例 被引量:1
10
作者 周春艳 路少石 《建筑与文化》 2025年第3期244-247,共4页
近年来,中国的能源需求随着经济的发展而快速增长。在建筑屋面上利用太阳能资源是实现我国“碳达峰、碳中和”目标的重要途径。文章提出了一种改进后的Mask R-CNN深度学习算法,通过将原模型中的FPN网络改进为PAN网络来提升模型对于图像... 近年来,中国的能源需求随着经济的发展而快速增长。在建筑屋面上利用太阳能资源是实现我国“碳达峰、碳中和”目标的重要途径。文章提出了一种改进后的Mask R-CNN深度学习算法,通过将原模型中的FPN网络改进为PAN网络来提升模型对于图像特征的提取能力,从而提高光伏潜力的评估效率。文章以长春市中心城市区的工业厂房为研究对象并评估其屋面的光伏利用潜力,最终计算得到长春市中心城区的工业厂房屋面面积为82.48×10^(6)m^(2),光伏利用潜力为144.4375×10^(8)kWh/年,可为长春市城市工业厂房屋顶光伏发展规划提供依据。 展开更多
关键词 Mask r-cnn 建筑屋面 光伏利用潜力 长春市工业厂房
在线阅读 下载PDF
基于深度学习算法Mask R-CNN的甲状腺结节检测模型研究
11
作者 王杰 王至诚 +2 位作者 娄帅 董建成 曹新志 《医学信息学杂志》 2025年第3期84-89,共6页
目的/意义采用基于区域卷积神经网络的目标掩码分割算法(mask region-based convolutional neural network, Mask R-CNN)建立目标检测模型,智能识别甲状腺超声图像结节位置,为超声医生决策提供参考。方法/过程收集超声结节图像1 650张,... 目的/意义采用基于区域卷积神经网络的目标掩码分割算法(mask region-based convolutional neural network, Mask R-CNN)建立目标检测模型,智能识别甲状腺超声图像结节位置,为超声医生决策提供参考。方法/过程收集超声结节图像1 650张,使用labelme工具进行结节位置标注。对Mask R-CNN的主干网络分别采用MobileNetV3、ResNet50、ResNet101和ResNet152进行替换,并引入特征金字塔和感兴趣区域对齐,采用迁移学习训练策略训练模型,比较不同网络下目标检测效果。结果/结论主干网络采用ResNet101训练的模型平均精确度为86.8%,平均召回率为95.3%,平均F1分数为90.6%,优于其他主干网络,能更精确地检测甲状腺结节,具有一定临床应用价值。 展开更多
关键词 甲状腺结节 Mask r-cnn 目标检测 神经网络
暂未订购
基于CCNet和Faster R-CNN模型的水稻叶片病害检测 被引量:1
12
作者 丁士宁 张克旺 姜明富 《江苏农业科学》 北大核心 2025年第15期239-245,共7页
为了准确检测水稻叶片病害,将深度学习模型CCNet和Faster R-CNN应用到水稻叶片病害检测上。首先收集3种不同类型的水稻叶片病害图像数据共计950张,从而构建水稻叶片病害数据集。为增强模型的泛化能力,在数据集划分训练集、验证集和测试... 为了准确检测水稻叶片病害,将深度学习模型CCNet和Faster R-CNN应用到水稻叶片病害检测上。首先收集3种不同类型的水稻叶片病害图像数据共计950张,从而构建水稻叶片病害数据集。为增强模型的泛化能力,在数据集划分训练集、验证集和测试集之后,对所有图像进行数据增强,扩展后的数据集图像数量达到7 600张。数据集构建完成后,使用CCNet模型对图像进行分割,从而将水稻叶片与其背景分离,避免背景对病害检测的干扰。进而使用Faster R-CNN模型检测病害种类和病害位置,同时为了增强检测精度,向Faster R-CNN模型引入特征金字塔网络,并且使用ROI Align层替换ROI Pooling层。经试验验证,本研究模型在所用水稻数据集上的平均精度均值指标达到了73.1%,相比于原Faster R-CNN模型提高了3.4百分点。对比试验结果表明,本研究模型的平均精度均值比SSD300、SSD512、Retinanet模型分别高13.0、5.1、6.9百分点,该模型的检测精度最高。试验结果验证了所提模型的有效性,表明该模型能够准确识别水稻白叶枯病、胡麻叶斑病和叶瘟病。 展开更多
关键词 水稻叶片病害 Faster r-cnn模型 CCNet模型 特征金字塔网络 ROI Align层
在线阅读 下载PDF
改进Faster R-CNN的变电站电气主接线图图元检测 被引量:1
13
作者 冯冰 杜岳凡 +4 位作者 金尧 宗祥瑞 金花 刘潭晶 王璁 《哈尔滨理工大学学报》 北大核心 2025年第4期39-47,共9页
针对变电站电气主接线图中图元检测精度低以及小目标图元误检率漏检率高的问题,提出一种基于改进Faster R-CNN算法的变电站电气主接线图图元检测方法。首先,引入深度残差网络结构,替换Faster R-CNN原始特征提取网络,增强多尺度图元目标... 针对变电站电气主接线图中图元检测精度低以及小目标图元误检率漏检率高的问题,提出一种基于改进Faster R-CNN算法的变电站电气主接线图图元检测方法。首先,引入深度残差网络结构,替换Faster R-CNN原始特征提取网络,增强多尺度图元目标特征提取能力;然后,引入特征金字塔网络,将浅层特征信息和深层特征信息融合,提升深层网络对小目标的检测性能;最后,依据小目标尺度分布特征,在区域建议网络中重新设定Anchor的参数值,进一步提高小目标检测性能。实验结果表明,改进算法的平均检测精度达88.9%,相比原算法提高了4.2%,具有更高的检测精度和更低的误检率与漏检率。 展开更多
关键词 变电站 接线图 图元检测 Faster r-cnn优化算法 深度学习
在线阅读 下载PDF
基于Faster R-CNN的气象设备观测环境影响图像研究 被引量:1
14
作者 王超然 周若 +2 位作者 李中华 邬昀 白子诚 《电子设计工程》 2025年第4期128-132,共5页
为确保气象站点实况观测数据的准确性,观测场地需要有良好的环境。该研究利用深度学习技术中的Faster R-CNN模型,自动检测气象观测站场景中可能干扰仪器读数的视觉障碍物。通过收集并详细标注实际观测场景的图像数据,建立一个包含环境... 为确保气象站点实况观测数据的准确性,观测场地需要有良好的环境。该研究利用深度学习技术中的Faster R-CNN模型,自动检测气象观测站场景中可能干扰仪器读数的视觉障碍物。通过收集并详细标注实际观测场景的图像数据,建立一个包含环境对观测设备产生影响情况的数据集,涵盖正常与异常环境情况的百叶箱和雨量筒图像及其标注信息。对Faster R-CNN模型进行微调和超参数优化,以适应该特定识别任务。实验结果验证了模型在识别和定位障碍物方面的高效性,准确率为97.1%,展现出了较好的鲁棒性。该项研究将图像识别处理用于自动站探测环境,不仅证明了深度学习在改善气象观测条件中的有效性,也为相似领域的应用提供了方法论上的指导。 展开更多
关键词 深度学习 Faster r-cnn 气象观测场 图像处理
在线阅读 下载PDF
基于Mask R-CNN的塔吉克族纺织品纹样数字化提取方法 被引量:1
15
作者 王怡佳 信晓瑜 钱娟 《上海纺织科技》 2025年第3期44-49,共6页
塔吉克族纺织品纹样造型精美、色彩奔放,具有浓郁的民族特色,对其进行深入挖掘和利用有利于中华优秀传统文化的保护和传承。目前常用的纹样分割技术对原始图像有着较高的要求,因此提出一种基于Mask R-CNN的塔吉克族纺织品纹样提取方法,... 塔吉克族纺织品纹样造型精美、色彩奔放,具有浓郁的民族特色,对其进行深入挖掘和利用有利于中华优秀传统文化的保护和传承。目前常用的纹样分割技术对原始图像有着较高的要求,因此提出一种基于Mask R-CNN的塔吉克族纺织品纹样提取方法,其能够从背景复杂的图像中识别并提取纺织品纹样区域,并对其中的纹样进行聚类,再根据色彩进行纹样分割,完成塔吉克族纺织品纹样的数字化提取。最后结合知识图谱相关技术,构建结构化、可视化的塔吉克族纺织品纹样知识图谱,为探索少数民族纹样数字化技术提供新的思路和方法。 展开更多
关键词 纺织品 纹样 塔吉克族 Mask r-cnn 数字化
原文传递
基于改进Mask-Scoring R-CNN的肌纤维自动分割与表型计算方法研究
16
作者 沃靖杰 田绪红 +3 位作者 尹令 杨杰 姚泽锴 蔡更元 《华中农业大学学报》 北大核心 2025年第2期134-144,共11页
为解决人工手动分割与半自动分割的精度及效率问题以及通用分割模型在面对各种噪声干扰时的表现不足,提出改进Mask-Scoring R-CNN的实例分割模型,实现对肌纤维细胞的高效分割。在Mask-Scoring R-CNN模型中引入CBAM(convolutional block ... 为解决人工手动分割与半自动分割的精度及效率问题以及通用分割模型在面对各种噪声干扰时的表现不足,提出改进Mask-Scoring R-CNN的实例分割模型,实现对肌纤维细胞的高效分割。在Mask-Scoring R-CNN模型中引入CBAM(convolutional block attention module)注意力机制,并对其进行改进,强化模型对特征信息的提取与表达,从而提升分割效果与模型在肌纤维分割任务中的泛化能力。改进Mask-Scoring RCNN模型在103张测试集的测试结果显示,表型数据测定值的均方根误差均比原模型更小,肌纤维总数均方根误差从2.08降至1.26,面积均方根误差从212.21μm^(2)降低至181.36μm^(2),平均直径均方根误差从2.87μm降低至1.47μm。试验结果表明改进后的模型能有效应对含噪声的肌纤维图像,在常见的噪声环境下依然能够准确分割出每个肌纤维。 展开更多
关键词 实例分割 Mask-Scoring r-cnn 猪肉肌纤维表型 细胞分割 注意力机制
在线阅读 下载PDF
基于FEPW R-CNN的苗期油菜和杂草检测方法 被引量:1
17
作者 李律 龙陈锋 +2 位作者 杨玉娟 王旭 刘鑫波 《农业与技术》 2025年第10期35-40,共6页
针对传统Faster R-CNN目标检测方法在油菜幼苗图像多目标任务中检测精度和效率较低的问题,本文提出一种基于FEPW R-CNN的多目标检测方法。使用EfficientNet网络取代传统的ResNet-50骨干网络,以增强模型的特征提取能力;结合了PANet上下... 针对传统Faster R-CNN目标检测方法在油菜幼苗图像多目标任务中检测精度和效率较低的问题,本文提出一种基于FEPW R-CNN的多目标检测方法。使用EfficientNet网络取代传统的ResNet-50骨干网络,以增强模型的特征提取能力;结合了PANet上下文信息增强模块,进一步融合了自下而上的路径增强;采用WIoU损失函数替换原有损失函数,使网络在训练过程中更加关注高质量的候选框,从而提高目标定位和分类的准确性。通过油菜幼苗数据集验证,本文所提方法取得了85.42%的mAP@0.5,显著优于传统方法和单阶段算法,为复杂场景下的多目标检测提供了高效且高精度的解决方案。 展开更多
关键词 Faster r-cnn 目标检测 机器视觉 EfficientNet
在线阅读 下载PDF
优化Faster R-CNN用于输电线路金具缺陷识别 被引量:2
18
作者 向哲宏 张捷 +3 位作者 宋卫平 李欢欢 徐小云 黄飞虎 《信息技术》 2025年第6期81-88,共8页
Faster R-CNN网络模型本身网络结构和参数存在检测准确度不够、检测的漏检率较高,以及不能完整标记检测目标的问题。因此通过对模拟退火算法进行优化,再将优化后的模拟退火算法对Faster R-CNN模型网络结构和参数进行寻优调试,将卷积神... Faster R-CNN网络模型本身网络结构和参数存在检测准确度不够、检测的漏检率较高,以及不能完整标记检测目标的问题。因此通过对模拟退火算法进行优化,再将优化后的模拟退火算法对Faster R-CNN模型网络结构和参数进行寻优调试,将卷积神经网络模型全连接层中神经元之间的权重和偏置看作参数,得到的最优参数再构建成新的Faster R-CNN模型网络,使得Faster R-CNN在目标检测和识别领域具有更好的效果。训练结果也证明,优化后的网络模型在目标检测识别的准确度上有极大的提高,并且对目标物体的定位错误率更低、定位位置更加准确,模型整体鲁棒性增加。 展开更多
关键词 优化模拟退火算法 Faster r-cnn 网络结构 输电线路金具 缺陷识别
在线阅读 下载PDF
基于改进Mask R-CNN的焊接成形缺陷检测与区域分割研究 被引量:2
19
作者 刘剑 段瑞彬 +5 位作者 崔琬婷 何亚章 王克宽 吴荣耀 高嘉璘 夏卫生 《电焊机》 2025年第9期98-101,144,共5页
针对焊接成形缺陷人工检测效率低、传统机器学习方法鲁棒性差,以及现有深度学习模型难以实现缺陷精确分割的问题,提出一种改进Mask R-CNN算法的焊接成形缺陷检测模型。首先,构建包含638组样本(驼峰304组、弧坑100组、飞溅234组)的焊接... 针对焊接成形缺陷人工检测效率低、传统机器学习方法鲁棒性差,以及现有深度学习模型难以实现缺陷精确分割的问题,提出一种改进Mask R-CNN算法的焊接成形缺陷检测模型。首先,构建包含638组样本(驼峰304组、弧坑100组、飞溅234组)的焊接缺陷数据集,通过Labelme进行像素级掩码标注,并采用数据增强优化样本多样性。在Mask R-CNN骨干网络(ResNet)中嵌入CBAM混合注意力机制模块,通过通道与空间双维度自适应特征增强,提升模型对小目标缺陷(如飞溅)的敏感度,然后采用改进的Mask R-CNN算法进行训练,并进行算法性能验证。结果表明,与改进前Mask R-CNN模型相比,采用注意力机制改进之后的Mask R-CNN模型的mAP@0.5提高了3.34%,mAP@0.75提高了9.78%,mAP@0.5∶0.95提高了4.96%,能够更有效用于焊接成形缺陷识别与区域分割。 展开更多
关键词 焊接成形缺陷 Mask r-cnn算法 缺陷识别 区域分割
在线阅读 下载PDF
基于FPN和Faster R-CNN的生命体征参数智能识别
20
作者 刘佳颖 刘金城 +4 位作者 綦雅婷 吴思圻 黄标晟 胡志雄 王建林 《计量学报》 北大核心 2025年第7期1075-1082,共8页
传统的多参数监护仪检定方法依赖人工读数和测量,效率低下。亟待研究一种基于人工智能的目标检测算法,实现多参数监护仪中生命体征参数的智能化识别,推动多参数监护仪自动化检定技术的发展。针对上述问题,提出一种基于FPN和Faster R-CN... 传统的多参数监护仪检定方法依赖人工读数和测量,效率低下。亟待研究一种基于人工智能的目标检测算法,实现多参数监护仪中生命体征参数的智能化识别,推动多参数监护仪自动化检定技术的发展。针对上述问题,提出一种基于FPN和Faster R-CNN的神经网络模型自动识别和分类生命体征参数,为后续实现多参数监护仪自动检定提供支持。为克服传统Faster R-CNN在中小目标识别任务上的不足,结合了ResNet50和FPN提取网络,以提升中小目标识别率。在实际临床采集的图像数据集上验证ResNet50+FPN的有效性,并与VGG16、MobileNetV2、EfficientNetB0、ResNet50等网络进行对比。结果表明,ResNet50+FPN识别的均值平均精度达到了83.32%,比VGG16提升了3.88%,在中小目标识别均值平均精度上分别提升了4.05%和9.60%。 展开更多
关键词 医学计量 生命体征参数 多参数监护仪 FPN Faster r-cnn 自动化检定 目标检测
在线阅读 下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部