R-wave detection is the main approach for heart rate variability analysis and clinical application based on R-R interval. The maximum first derivative plus the maximum value of the double search algorithm is applied o...R-wave detection is the main approach for heart rate variability analysis and clinical application based on R-R interval. The maximum first derivative plus the maximum value of the double search algorithm is applied on electrocardiogram(ECG) of MIH-BIT Arrhythmia Database to extract R wave. Through the study of algorithm's characteristics and R-wave detection method, data segmentation method is modified to improve the detection accuracy. After segmentation modification, average accuracy rate of 6 sets of short ECG data increase from 82.51% to 93.70%, and the average accuracy rate of 11 groups long-range data is 96.61%. Test results prove that the algorithm and segmentation method can accurately locate R wave and have good effectiveness and versatility, but may exist some undetected problems due to algorithm implementation.展开更多
QRS detection is very important in cardiovascular disease diagnosis and ECG (electrocardiogram) monitor, because it is the precondition of the calculation of correlative parameters and diagnosis. This paper presents a...QRS detection is very important in cardiovascular disease diagnosis and ECG (electrocardiogram) monitor, because it is the precondition of the calculation of correlative parameters and diagnosis. This paper presents a non-parametric derivative-based method for R wave detection in ECG signal. This method firstly uses a digital filter to cut out noises from ECG signals, utilizes local polynomial fitting that is a non-parametric derivative-based method to estimate the derivative values, and then selects appropriate thresholds by the difference, and the algorithm adaptively adjusts the size of thresholds periodically according to the different needs. Afterwards, the position of R wave is detected by the estimation of the first-order derivative values with nonparametric local polynomial statistical model. In addition, in order to improve the accuracy of detection, the method of redundant detection and missing detection are applied in this paper. The clinical experimental data are used to evaluate the effectiveness of the algorithm. Experimental results show that the method in the process of the detection of R wave is much smoother, compared with differential threshold algorithm and it can detect the R wave in the ECG signals accurately.展开更多
A broadband T/R frond-end of active holographic imaging system is presented. Compact autodyne mode circuit structure front-end is adopted to achieve higher signal to noise ratio and higher reliability, which is benefi...A broadband T/R frond-end of active holographic imaging system is presented. Compact autodyne mode circuit structure front-end is adopted to achieve higher signal to noise ratio and higher reliability, which is beneficial to the after-end imagining. The factors that influence the dynamic range and the transverse resolution ratio of holographic imaging system have been analyzed. Wide-band oscillator, wide-band low noise amplifier and the tapered slot antennas are implemented to meet the requirements of the holographic imagining system. According to the measured results, the output power is uniform in the broadband working frequency. The sub-harmonic suppression is better than 25 dBc from the frequency of 28 GHz to 33 GHz. The isolation between antennas channel is greater than 20 dB. The experimental result shows that the performance of the front-end is good enough to meet the needs of active millimeter-wave holographic imaging system.展开更多
Study of seismic wave excitation and propagation in laterally heterogeneous media was an active and important subject in seismology in the past two decades, numerous analytical and numerical efforts have been made in ...Study of seismic wave excitation and propagation in laterally heterogeneous media was an active and important subject in seismology in the past two decades, numerous analytical and numerical efforts have been made in this research field. In this article, I have, first, made a brief review on those developments and then introduced and summarized a unified and efficient method, global generalized reflection-transmission (abbreviated to R/T thereafter) matrices method, for synthetic seismograms in multi-layered media with irregular interfaces developed by the author [24~26]. As demonstrated in this article, this method could be regarded as an extension of the generalized R/T coefficients method for the horizontally layered case [2,5] to the layered media with irregularly shaped interfaces by incorporating the T matrices technique [27,28]. Because of the use of a recursive scheme in computing the global generalized R/T matrices, this method is efficient, particularly for the case with a large number of展开更多
We collected 343 groups of abdominal electrocardiogram(ECG) data from 78 pregnant women and deleted the channels unable for experts to determine R-wave peaks from them; then, based on these filtered data, the statisti...We collected 343 groups of abdominal electrocardiogram(ECG) data from 78 pregnant women and deleted the channels unable for experts to determine R-wave peaks from them; then, based on these filtered data, the statistics of position difference of corresponding R-wave peaks for different maternal ECG components from different points were studied. The resultant statistics showed the regularity that the position difference of corresponding maternal R-wave peaks between different abdominal points does not exceed the range of 30 ms. The regularity was also proved using the fECG data from MIT–BIH PhysioBank. Additionally, the paper applied the obtained regularity, the range of position differences of the corresponding maternal R-wave peaks, to accomplish the automatic detection of maternal R-wave peaks in the recorded all initial 343 groups of abdominal signals, including the ones with the largest fetal ECG components, and all 55 groups of ECG data from MIT–BIH PhysioBank, achieving the successful separation of the maternal ECGs.展开更多
In recent years, there has been increased interest in the terahertz waveband for application to ultra-high-speed wireless communications and remote sensing systems. However, atmospheric propagation at these wavelength...In recent years, there has been increased interest in the terahertz waveband for application to ultra-high-speed wireless communications and remote sensing systems. However, atmospheric propagation at these wavelengths has a significant effect on the operational stability of systems using the terahertz waveband, so elucidating the effects of rain on propagation is a topic of high interest. We demonstrate various methods for calculating attenuation due to rain and evaluate these methods through comparison with calculated and experimental values. We find that in the 90 - 225 GHz microwave band, values calculated according to Mie scattering theory using the Best and P-S sleet raindrop size distributions best agree with experimental values. At 313 and 355 GHz terahertz-waveband frequencies, values calculated according to Mie scattering theory using the Weibull distribution and a prediction model following ITU-R recommendations best agree with experimental values. We furthermore find that attenuation due to rain increases in proportion to frequency for microwave-band frequencies below approximately 50 GHz, but that there is a peak at around 100 GHz, above which the degree of attenuation remains steady or decreases. Rain-induced attenuation increases in proportion to the rainfall intensity.展开更多
Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR)remote sensing images.Ocean internal waves detection in SAR images consequently constituted a difficult and popular rese...Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR)remote sensing images.Ocean internal waves detection in SAR images consequently constituted a difficult and popular research topic.In this paper,ocean internal waves are detected in SAR images by employing the faster regions with convolutional neural network features(Faster R-CNN)framework;for this purpose,888 internal wave samples are utilized to train the convolutional network and identify internal waves.The experimental results demonstrate a 94.78%recognition rate for internal waves,and the average detection speed is 0.22 s/image.In addition,the detection results of internal wave samples under different conditions are analyzed.This paper lays a foundation for detecting ocean internal waves using convolutional neural networks.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61271082,61201029,81201161)
文摘R-wave detection is the main approach for heart rate variability analysis and clinical application based on R-R interval. The maximum first derivative plus the maximum value of the double search algorithm is applied on electrocardiogram(ECG) of MIH-BIT Arrhythmia Database to extract R wave. Through the study of algorithm's characteristics and R-wave detection method, data segmentation method is modified to improve the detection accuracy. After segmentation modification, average accuracy rate of 6 sets of short ECG data increase from 82.51% to 93.70%, and the average accuracy rate of 11 groups long-range data is 96.61%. Test results prove that the algorithm and segmentation method can accurately locate R wave and have good effectiveness and versatility, but may exist some undetected problems due to algorithm implementation.
文摘QRS detection is very important in cardiovascular disease diagnosis and ECG (electrocardiogram) monitor, because it is the precondition of the calculation of correlative parameters and diagnosis. This paper presents a non-parametric derivative-based method for R wave detection in ECG signal. This method firstly uses a digital filter to cut out noises from ECG signals, utilizes local polynomial fitting that is a non-parametric derivative-based method to estimate the derivative values, and then selects appropriate thresholds by the difference, and the algorithm adaptively adjusts the size of thresholds periodically according to the different needs. Afterwards, the position of R wave is detected by the estimation of the first-order derivative values with nonparametric local polynomial statistical model. In addition, in order to improve the accuracy of detection, the method of redundant detection and missing detection are applied in this paper. The clinical experimental data are used to evaluate the effectiveness of the algorithm. Experimental results show that the method in the process of the detection of R wave is much smoother, compared with differential threshold algorithm and it can detect the R wave in the ECG signals accurately.
文摘A broadband T/R frond-end of active holographic imaging system is presented. Compact autodyne mode circuit structure front-end is adopted to achieve higher signal to noise ratio and higher reliability, which is beneficial to the after-end imagining. The factors that influence the dynamic range and the transverse resolution ratio of holographic imaging system have been analyzed. Wide-band oscillator, wide-band low noise amplifier and the tapered slot antennas are implemented to meet the requirements of the holographic imagining system. According to the measured results, the output power is uniform in the broadband working frequency. The sub-harmonic suppression is better than 25 dBc from the frequency of 28 GHz to 33 GHz. The isolation between antennas channel is greater than 20 dB. The experimental result shows that the performance of the front-end is good enough to meet the needs of active millimeter-wave holographic imaging system.
文摘Study of seismic wave excitation and propagation in laterally heterogeneous media was an active and important subject in seismology in the past two decades, numerous analytical and numerical efforts have been made in this research field. In this article, I have, first, made a brief review on those developments and then introduced and summarized a unified and efficient method, global generalized reflection-transmission (abbreviated to R/T thereafter) matrices method, for synthetic seismograms in multi-layered media with irregular interfaces developed by the author [24~26]. As demonstrated in this article, this method could be regarded as an extension of the generalized R/T coefficients method for the horizontally layered case [2,5] to the layered media with irregularly shaped interfaces by incorporating the T matrices technique [27,28]. Because of the use of a recursive scheme in computing the global generalized R/T matrices, this method is efficient, particularly for the case with a large number of
基金Project supported by the National Natural Science Foundation of China (Grant No. 61271079) and the Jiangsu Supporting Plan Project, China (Grant No. BE2010720).
文摘We collected 343 groups of abdominal electrocardiogram(ECG) data from 78 pregnant women and deleted the channels unable for experts to determine R-wave peaks from them; then, based on these filtered data, the statistics of position difference of corresponding R-wave peaks for different maternal ECG components from different points were studied. The resultant statistics showed the regularity that the position difference of corresponding maternal R-wave peaks between different abdominal points does not exceed the range of 30 ms. The regularity was also proved using the fECG data from MIT–BIH PhysioBank. Additionally, the paper applied the obtained regularity, the range of position differences of the corresponding maternal R-wave peaks, to accomplish the automatic detection of maternal R-wave peaks in the recorded all initial 343 groups of abdominal signals, including the ones with the largest fetal ECG components, and all 55 groups of ECG data from MIT–BIH PhysioBank, achieving the successful separation of the maternal ECGs.
文摘In recent years, there has been increased interest in the terahertz waveband for application to ultra-high-speed wireless communications and remote sensing systems. However, atmospheric propagation at these wavelengths has a significant effect on the operational stability of systems using the terahertz waveband, so elucidating the effects of rain on propagation is a topic of high interest. We demonstrate various methods for calculating attenuation due to rain and evaluate these methods through comparison with calculated and experimental values. We find that in the 90 - 225 GHz microwave band, values calculated according to Mie scattering theory using the Best and P-S sleet raindrop size distributions best agree with experimental values. At 313 and 355 GHz terahertz-waveband frequencies, values calculated according to Mie scattering theory using the Weibull distribution and a prediction model following ITU-R recommendations best agree with experimental values. We furthermore find that attenuation due to rain increases in proportion to frequency for microwave-band frequencies below approximately 50 GHz, but that there is a peak at around 100 GHz, above which the degree of attenuation remains steady or decreases. Rain-induced attenuation increases in proportion to the rainfall intensity.
基金Supported by the National Natural Science Foundation of China(No.61471136)the Special Project for Global Change and Air-sea Interaction of Ministry of Natural Resources(No.GASI-02-SCS-YGST2-04)the Chinese Association of Ocean Mineral Resources R&D(No.DY135-E2-4)
文摘Ocean internal waves appear as irregular bright and dark stripes on synthetic aperture radar(SAR)remote sensing images.Ocean internal waves detection in SAR images consequently constituted a difficult and popular research topic.In this paper,ocean internal waves are detected in SAR images by employing the faster regions with convolutional neural network features(Faster R-CNN)framework;for this purpose,888 internal wave samples are utilized to train the convolutional network and identify internal waves.The experimental results demonstrate a 94.78%recognition rate for internal waves,and the average detection speed is 0.22 s/image.In addition,the detection results of internal wave samples under different conditions are analyzed.This paper lays a foundation for detecting ocean internal waves using convolutional neural networks.