The microstructural evolution of a 18R single phase (S 18) alloy during annealing at 773 K for 100 h was investigated in order to reveal the formation mechanism of 14H phase. The results showed that the as-cast S 18...The microstructural evolution of a 18R single phase (S 18) alloy during annealing at 773 K for 100 h was investigated in order to reveal the formation mechanism of 14H phase. The results showed that the as-cast S 18 alloy was composed of 18R phase (its volume fraction exceeds 93%), W particles and α-Mg phase. The 18R phase in S18 alloy was thermally stable and was not transformed into 14H long period stacking ordered (LPSO) phase during annealing. However, 14H lamellas formed within tiny α-Mg slices, and their average size and volume fraction increased with prolonging annealing time. Moreover, the 14H phase is nucleated within α-Mg independently on the basis of basal stacking faults (SFs). The broadening growth of 14H lamellas is an interface-controlled process which involves ledges on basal planes, while the lengthening growth is a diffusion-controlled process and is associated with diffusion of solute atoms. The formation mechanism of 14H phase in this alloy could be explained as α-Mg'→α-Mg+14H.展开更多
This study investigated a peculiar phenomenon of self-reorientation of thermally formed R phase in nanocrystalline Ti_(50)Ni_(45.5)Fe_(4.5)by means of in-situ syn-chrotron high energy X-ray diffraction(HE-XRD).Two sam...This study investigated a peculiar phenomenon of self-reorientation of thermally formed R phase in nanocrystalline Ti_(50)Ni_(45.5)Fe_(4.5)by means of in-situ syn-chrotron high energy X-ray diffraction(HE-XRD).Two samples with different average grain sizes of 40 and 90 nm were investigated.R phase in the 40-nm grain size sample was found to self-reorient gradually upon cooling,whereas the same phenomenon did not occur in the 90-nm grain size sample.This self-reorientation process is attributed to the development and evolution of an internal stress anisotropy caused by the second order continuous lattice distortion of R phase upon further cooling in the small nanograined matrix,which lacks the self-accommodation mechanism for internal stress cancellation.展开更多
The ongoing collaborative research between Auburn University and Johnson Controls was described. A Ti rich binary NiTi alloy and two ternary alloys having the compositions Ni 49 Ti 51- x Hf x with 1% and 3%(more fract...The ongoing collaborative research between Auburn University and Johnson Controls was described. A Ti rich binary NiTi alloy and two ternary alloys having the compositions Ni 49 Ti 51- x Hf x with 1% and 3%(more fraction) Hf were investigated. The influence of Hf content, cold working(CW) and heat treatment temperature (HT) on the martensitic and R phase transformations was thermally analyzed using differential scanning calorimetry (DSC). The crystal structures of the alloys were examined by X ray diffraction. Results showed that at low HT, the martensitic transformation temperature (TT) decreases with increasing CW for all the alloys studied. In this alloy, for a given CW, the martensite TT increases with increasing HT above 350 ℃. This phenomenon is enhanced by the presence of Hf. Different mechanisms can be responsible for the observed behavior. These mechanisms may involve interaction between phase transformations, dislocations and internal stresses. The effect of Hf substitution is likely due to the atomic size difference between Ti and Hf. A secondary phase,identified as Ti 2Ni in binary NiTi and (TiHf) 2Ni in the two ternary alloys, was observed. The influence of cold work, heat treatment and thermal cycling on the R phase (R) transformation in three alloys was also thermally analyzed. Results showed that such transformation depends on composition as well as CW and HT conditions in a complex manner. Effort was made to identify the microstructure and the factors responsible for the observed behavior in the R phase transformation.展开更多
Measurements of electrical resistivity, X-ray diffraction, and tensile test at room temperature and ?196°C were performed to investigate the effects of Al addition substituting Ni on the phase transformation beh...Measurements of electrical resistivity, X-ray diffraction, and tensile test at room temperature and ?196°C were performed to investigate the effects of Al addition substituting Ni on the phase transformation behaviors, the mechanical properties, and the shape memory effects of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys. It is found that 1at% Al addition dramatically decreases the martensitic start transformation temperature and expands the transformation temperature range of R-phase for TiNiFeAl alloys. The results of tensile test indicate that 1at% Al improves the yield strength of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys by 40% and 64%, but de- creases the plasticity to 11% and 12% from 26% and 27% respectively. Moreover, excellent shape memory effect of 6.6% and 7.5% were found in Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys, which results from the stress-induced martensite transformation from the R-phase.展开更多
To increase the strength of the laser powder-bed fusion (LPBF) Al-Si-based aluminum alloy, TiB_(2) ceramic particles were selected to be mixed with high-Mg content Al-Si-Mg-Zr powder, and then a novel TiB_(2)/Al-Si-Mg...To increase the strength of the laser powder-bed fusion (LPBF) Al-Si-based aluminum alloy, TiB_(2) ceramic particles were selected to be mixed with high-Mg content Al-Si-Mg-Zr powder, and then a novel TiB_(2)/Al-Si-Mg-Zr composite was fabricated using LPBF. The results indicated that a dense sample with a maximum relative density of 99.85% could be obtained by adjusting the LPBF process parameters. Incorporating TiB_(2) nanoparticles enhanced the powder's laser absorption rate, thereby raising the alloy's intrinsic heat treatment temperature and consequently facilitating the precipitation of Si and βʺ nanoparticles in the α-Al cells. Moreover, the rapid cooling process during LPBF resulted in numerous alloying elements with low-stacking fault energy dissolving in the α-Al matrix, thus promoting the formation of the 9R phase. After a 48 h direct aging treatment at 150℃, the strength of the alloy slightly increased due to the increase of nanoprecipitates. Both yield strength and ultimate tensile strength of the LPBF TiB_(2)/Al-Si-Mg-Zr alloy were significantly higher than that of other LPBF TiB_(2)-modified aluminum alloys with external addition.展开更多
The R-phase transformation process in selected TiNi alloys has been studied in great detail by using in situ TEM technique. The R-phase transformation was found to be a reversible thermoelastic displacive transformati...The R-phase transformation process in selected TiNi alloys has been studied in great detail by using in situ TEM technique. The R-phase transformation was found to be a reversible thermoelastic displacive transformation with a nucleation and growth process. The R-phase nucleates at the precipitate/matrix interface in aged specimens and grows by moving the coherent R/matrix interfaces. The stress field of Ti3Ni4 precipitates plays a much more important role in the formation of the R-phase than dislocations in aged TiNi alloy. The microstructure of the R-phase has also been studied.展开更多
To improve the processability and mechanical properties of the selective laser melting(SLM)low Sc content Al−Mg−Sc−Zr alloy,Mn was used to partially replace Mg.The processability,microstructure,and mechanical properti...To improve the processability and mechanical properties of the selective laser melting(SLM)low Sc content Al−Mg−Sc−Zr alloy,Mn was used to partially replace Mg.The processability,microstructure,and mechanical properties of the SLM-fabricated Al−Mg−Mn−Sc−Zr alloy were systematically investigated by density measurement,microstructure characterization,and tensile testing.The results revealed that dense samples could be obtained by adjusting the SLM process parameters.The alloy exhibited a fine equiaxed-columnar bimodal grain microstructure.The presence of primary Al3Sc andα-Al(Mn,Fe)Si particles contributed to the grain refinement of the alloy with an average grain size of 4.63μm.Upon aging treatment at 350°C for 2 h,the strength and elongation of the alloy were simultaneously improved due to the precipitation of Al3Sc nanoparticles and the formation of the 9R phase.This study demonstrates that the strength−plasticity trade-off of the aluminum alloy can be overcome by utilizing SLM technology and subsequent post-heat treatment to induce the formation of the long-period stacked ordered phase.展开更多
The semi-quantum two-orbital exchange model is used to investigate the effect of small rare-earth ion substitution on orthorhombic RMnO 3 with A-type antiferromagnetic order,using the Monte Carlo algorithm,exact diago...The semi-quantum two-orbital exchange model is used to investigate the effect of small rare-earth ion substitution on orthorhombic RMnO 3 with A-type antiferromagnetic order,using the Monte Carlo algorithm,exact diagonalization,and zero-temperature optimization approaches.It is revealed that the substitution results in a rich multiferroic phase diagram where the coexisting A-type antiferromagnetic phase and spiral spin phase,pure spiral spin phase,coexisting spiral spin phase,the E-type antiferromagnetic phase,and the pure E-type antiferromagnetic phase emerge in sequence.The multiferroic phase transitions modulate substantially the electric polarization,which is consistent qualitatively with recent experiments.展开更多
Low-carbon Cr-Mo micro-alloyed deep drawing dual-phase steels were designed in laboratory. As the mi- crostructure and texture evolution in hot-rolled strips and annealed sheets were investigated using SEM, TEM and XR...Low-carbon Cr-Mo micro-alloyed deep drawing dual-phase steels were designed in laboratory. As the mi- crostructure and texture evolution in hot-rolled strips and annealed sheets were investigated using SEM, TEM and XRD technologies, the attribution of solute Mo and MoC particles to DP sheets' drawing capacity was investigated. The precipitation thermodynamics were also calculated by Thermo-calc software. Results show that the precipitates in hot-rolled strips mainly are MoC, AIN and MnS, and with the increase of Mo addition, finer and denser MoC par- ticles precipitated in matrix and along grain boundaries of ferrite more easily. Weak textures are shown in the hot- rolled strips, and {112}~110~ and {223}%110~ components tend to be stable in subsequent cold rolling process. During annealing, on one hand, the development of ~lll~//ND texture is suppressed because finer MoC particles prevent the grain boundary migration. On the other hand, unfavorable texture {001 } %110:〉 significantly reduces with Mo increasing, which is attributed to that part of solution C in matrix has been fixed during recrystallization. In addition, the addition of Mo can enhance hardenability strongly and MoC easily re-dissolve at high temperature, which is favor to form martensite in dual-phase steel.展开更多
Ferritic heat resistant steels involving precipitation of intermetallic phases have drawn a growing interest for the enhancement of creep strength, while the brittleness of the intermetallic phases may lower the tough...Ferritic heat resistant steels involving precipitation of intermetallic phases have drawn a growing interest for the enhancement of creep strength, while the brittleness of the intermetallic phases may lower the toughness of the alloy. Therefore, it is necessary to optimize the dispersion characteristics of the intermetallics phase through microstructural control to minimize the trade-off between the strength and toughness. The effects of -Fe matrix substructures on the precipitation sequence, morphology, dispersion characteristics, and the stability of the intermetallic phases are investigated in Fe-Cr-W-Co-Si system. The precipitates of the Si-free Fe-10Cr-l.4W-4.5Co (at%) alloy aged at 873K are the R-phase but those of the Si-added Fe-10Cr-l.4W-4.5Co-0.3Si (at%) alloy are the icosahedral quasicrystalline phase. The precipitates in both the Si-free and Si-added alloys aged at 973K are the Laves phase. Matrix of the alloys is controlled by heat treatments as to provide three types of matrix substructures; ferrite, ferrite/martensite mixture and martensite. The hardening behavior of the alloys depends on the matrix substructures and is independent of the kinds of precipitates. In the alloys with ferrite matrix, the peak of hardness during aging at 873K shifts to longer aging time in comparison with that in the alloys with lath martensite matrix which contain numbers of nucleation sites.展开更多
A high density of {110} shear planes has been observed in the R-phase (Al5CuLi3)following phase transformation from the AlCuLi icosahedral Phase. The Present paper shows that the atomic arrangement in the vicinity of ...A high density of {110} shear planes has been observed in the R-phase (Al5CuLi3)following phase transformation from the AlCuLi icosahedral Phase. The Present paper shows that the atomic arrangement in the vicinity of the shear planes can be described as a two-dimensional periodic array of atom clusters with 5-fold symmetry. This result is obtained by projecting along the [1. 618...01] direction of the atomic positions from four adjacent lattice planes that cross the shear plane. The projection reveals that the shear plane consists of pentagonal arrangements of double triacontahedra,each pentagon incorporating 606 atoms. The calculated diffraction pattern from the pentagon has approximate 10-fold symmetry characteristic of a quasicrystal.展开更多
The precipitation behaviour of Fe-Cr-Mo and Fe-Cr-W alloys during aging has been ex- perimentally studied.It was found that in the early stage of aging,a metastable R phase pre- cipitated in both alloys,it was transfo...The precipitation behaviour of Fe-Cr-Mo and Fe-Cr-W alloys during aging has been ex- perimentally studied.It was found that in the early stage of aging,a metastable R phase pre- cipitated in both alloys,it was transformed into stable μ-phase,Laves-phase,X-phase or σ-phase in the later stages.The crystallographic structure of metastable R-phase is rhombohedral with lattice parameters of a=0.9075 nm and α=74.45°.The chemical compo- sition of R-phase is Fe-(27.5—34.9)Mo-(0—25.5)Cr and Fe-(28.9—33.0)W-(9.36— 21.0)Cr in at.-% in Fe-Cr-Mo and Fe-Cr-W system,respectively.展开更多
Ti-50.6Ni(molar fraction, %) shape memory alloy solution treated at 850℃ for 1h followed by ageing treatment at 450℃ for 3h was studied with differential scanning calorimetry(DSC), X-ray diffractometry(XR...Ti-50.6Ni(molar fraction, %) shape memory alloy solution treated at 850℃ for 1h followed by ageing treatment at 450℃ for 3h was studied with differential scanning calorimetry(DSC), X-ray diffractometry(XRD) and transmission electron microscopy(TEM). DSC measurement reveals two separate transformation peaks. XRD and TEM demonstrate that a three-stage transformation occurs. The Ti3Ni4 precipitates are coherent with the R-phase. The crystal structure of R-phase was analyzed by two diffraction patterns method. The diffraction patterns of R-phase were obtained in detail from the same region.展开更多
The microbial community structures in an integrated two-phase anaerobic reactor(ITPAR)were investigated by 16 S r DNA clone library technology. The 75 L reactor was designed with a 25 L rotating acidogenic unit at t...The microbial community structures in an integrated two-phase anaerobic reactor(ITPAR)were investigated by 16 S r DNA clone library technology. The 75 L reactor was designed with a 25 L rotating acidogenic unit at the top and a 50 L conventional upflow methanogenic unit at the bottom, with a recirculation connected to the two units. The reactor had been operated for 21 stages to co-digest fruit/vegetable wastes and wheat straw, which showed a very good biogas production and decomposition of cellulosic materials. The results showed that many kinds of cellulose and glycan decomposition bacteria related with Bacteroidales,Clostridiales and Syntrophobacterales were dominated in the reactor, with more bacteria community diversities in the acidogenic unit. The methanogens were mostly related with Methanosaeta, Methanosarcina, Methanoculleus, Methanospirillum and Methanobacterium; the predominating genus Methanosaeta, accounting for 40.5%, 54.2%, 73.6% and 78.7% in four samples from top to bottom, indicated a major methanogenesis pathway by acetoclastic methanogenesis in the methanogenic unit. The beta diversity indexes illustrated a more similar distribution of bacterial communities than that of methanogens between acidogenic unit and methanogenic unit. The differentiation of methanogenic community composition in two phases, as well as pH values and volatile fatty acid(VFA) concentrations confirmed the phase separation of the ITPAR. Overall, the results of this study demonstrated that the special designing of ITPAR maintained a sufficient number of methanogens, more diverse communities and stronger syntrophic associations among microorganisms, which made two phase anaerobic digestion of cellulosic materials more efficient.展开更多
The Co-Cr-W ternary system was critically assessed using the CALPHAD technique.The solution phases including the liquid,γ-Co,ε-Co and α-Cr were described by a substitutional solution model.The σ,μ and R phases we...The Co-Cr-W ternary system was critically assessed using the CALPHAD technique.The solution phases including the liquid,γ-Co,ε-Co and α-Cr were described by a substitutional solution model.The σ,μ and R phases were described by three-sublattice models of(Co,W)8(Cr,W)4(Co,Cr,W)18,(Co,Cr,W)7W2(Co,Cr,W)4 and(Co,W)27(Cr,W)14(Co,Cr,W)12,respectively,in order to reproduce their homogeneity ranges.A self-consistent set of thermodynamic parameters for each phase was derived.The calculated isothermal sections at 1 000,1 200 and 1 350 ℃ are in good agreement with the experimental data.A eutectoid reaction of R μ+γ-Co+σ in this ternary system was predicted to occur at 1 022 ℃.展开更多
The transformation behavior of Ni Ti Nb based alloys was analysed.The absence of R phase transformation in these alloys is related to the stress field in the NiTi matrix.The thermal mismatch stress was calculated by...The transformation behavior of Ni Ti Nb based alloys was analysed.The absence of R phase transformation in these alloys is related to the stress field in the NiTi matrix.The thermal mismatch stress was calculated by the Eshelby method in Ni Ti Nb alloys.The results show that the mean matrix elastic stress field is isostatic tensile,there is no preferred stress in [111] B 2 direction.The mean matrix stress from the thermal misfit between NiTi matrix and β Nb particle is too small to induce dislocations.All the factors tend to inhibit R phase transformation.展开更多
基金Project(BK20160869)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(GY12015009)supported by the Nantong Science and Technology Program,China+1 种基金Project(2015B01314)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51501039)supported by the National Natural Science Foundation of China
文摘The microstructural evolution of a 18R single phase (S 18) alloy during annealing at 773 K for 100 h was investigated in order to reveal the formation mechanism of 14H phase. The results showed that the as-cast S 18 alloy was composed of 18R phase (its volume fraction exceeds 93%), W particles and α-Mg phase. The 18R phase in S18 alloy was thermally stable and was not transformed into 14H long period stacking ordered (LPSO) phase during annealing. However, 14H lamellas formed within tiny α-Mg slices, and their average size and volume fraction increased with prolonging annealing time. Moreover, the 14H phase is nucleated within α-Mg independently on the basis of basal stacking faults (SFs). The broadening growth of 14H lamellas is an interface-controlled process which involves ledges on basal planes, while the lengthening growth is a diffusion-controlled process and is associated with diffusion of solute atoms. The formation mechanism of 14H phase in this alloy could be explained as α-Mg'→α-Mg+14H.
基金financially supported by the National Natural Science Foundation of China (Nos.51731010, 51831006,51871241,51971243 and 91963112)Australian Research Council (No.DP190102990)
文摘This study investigated a peculiar phenomenon of self-reorientation of thermally formed R phase in nanocrystalline Ti_(50)Ni_(45.5)Fe_(4.5)by means of in-situ syn-chrotron high energy X-ray diffraction(HE-XRD).Two samples with different average grain sizes of 40 and 90 nm were investigated.R phase in the 40-nm grain size sample was found to self-reorient gradually upon cooling,whereas the same phenomenon did not occur in the 90-nm grain size sample.This self-reorientation process is attributed to the development and evolution of an internal stress anisotropy caused by the second order continuous lattice distortion of R phase upon further cooling in the small nanograined matrix,which lacks the self-accommodation mechanism for internal stress cancellation.
文摘The ongoing collaborative research between Auburn University and Johnson Controls was described. A Ti rich binary NiTi alloy and two ternary alloys having the compositions Ni 49 Ti 51- x Hf x with 1% and 3%(more fraction) Hf were investigated. The influence of Hf content, cold working(CW) and heat treatment temperature (HT) on the martensitic and R phase transformations was thermally analyzed using differential scanning calorimetry (DSC). The crystal structures of the alloys were examined by X ray diffraction. Results showed that at low HT, the martensitic transformation temperature (TT) decreases with increasing CW for all the alloys studied. In this alloy, for a given CW, the martensite TT increases with increasing HT above 350 ℃. This phenomenon is enhanced by the presence of Hf. Different mechanisms can be responsible for the observed behavior. These mechanisms may involve interaction between phase transformations, dislocations and internal stresses. The effect of Hf substitution is likely due to the atomic size difference between Ti and Hf. A secondary phase,identified as Ti 2Ni in binary NiTi and (TiHf) 2Ni in the two ternary alloys, was observed. The influence of cold work, heat treatment and thermal cycling on the R phase (R) transformation in three alloys was also thermally analyzed. Results showed that such transformation depends on composition as well as CW and HT conditions in a complex manner. Effort was made to identify the microstructure and the factors responsible for the observed behavior in the R phase transformation.
文摘Measurements of electrical resistivity, X-ray diffraction, and tensile test at room temperature and ?196°C were performed to investigate the effects of Al addition substituting Ni on the phase transformation behaviors, the mechanical properties, and the shape memory effects of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys. It is found that 1at% Al addition dramatically decreases the martensitic start transformation temperature and expands the transformation temperature range of R-phase for TiNiFeAl alloys. The results of tensile test indicate that 1at% Al improves the yield strength of Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys by 40% and 64%, but de- creases the plasticity to 11% and 12% from 26% and 27% respectively. Moreover, excellent shape memory effect of 6.6% and 7.5% were found in Ti50Ni47Fe2Al1 and Ti50Ni46.5Fe2.5Al1 alloys, which results from the stress-induced martensite transformation from the R-phase.
基金supported by the National Natural Science Foundation of China(Nos.51801079 and 52001140)the National Science Centre,Poland(Narodowe Centrum Nauki)(No.UMO-2021/42/E/ST5/00339).
文摘To increase the strength of the laser powder-bed fusion (LPBF) Al-Si-based aluminum alloy, TiB_(2) ceramic particles were selected to be mixed with high-Mg content Al-Si-Mg-Zr powder, and then a novel TiB_(2)/Al-Si-Mg-Zr composite was fabricated using LPBF. The results indicated that a dense sample with a maximum relative density of 99.85% could be obtained by adjusting the LPBF process parameters. Incorporating TiB_(2) nanoparticles enhanced the powder's laser absorption rate, thereby raising the alloy's intrinsic heat treatment temperature and consequently facilitating the precipitation of Si and βʺ nanoparticles in the α-Al cells. Moreover, the rapid cooling process during LPBF resulted in numerous alloying elements with low-stacking fault energy dissolving in the α-Al matrix, thus promoting the formation of the 9R phase. After a 48 h direct aging treatment at 150℃, the strength of the alloy slightly increased due to the increase of nanoprecipitates. Both yield strength and ultimate tensile strength of the LPBF TiB_(2)/Al-Si-Mg-Zr alloy were significantly higher than that of other LPBF TiB_(2)-modified aluminum alloys with external addition.
文摘The R-phase transformation process in selected TiNi alloys has been studied in great detail by using in situ TEM technique. The R-phase transformation was found to be a reversible thermoelastic displacive transformation with a nucleation and growth process. The R-phase nucleates at the precipitate/matrix interface in aged specimens and grows by moving the coherent R/matrix interfaces. The stress field of Ti3Ni4 precipitates plays a much more important role in the formation of the R-phase than dislocations in aged TiNi alloy. The microstructure of the R-phase has also been studied.
基金supported by the National Natural Science Foundation of China(Nos.51801079,52001140)the National Funds Through FCT of Portugal–Fundacao para a Ciência e a Tecnologia,under a scientific contract of 2021.04115.CEECIND,and the Projects of UIDB/00285/2020,and LA/0112/2020。
文摘To improve the processability and mechanical properties of the selective laser melting(SLM)low Sc content Al−Mg−Sc−Zr alloy,Mn was used to partially replace Mg.The processability,microstructure,and mechanical properties of the SLM-fabricated Al−Mg−Mn−Sc−Zr alloy were systematically investigated by density measurement,microstructure characterization,and tensile testing.The results revealed that dense samples could be obtained by adjusting the SLM process parameters.The alloy exhibited a fine equiaxed-columnar bimodal grain microstructure.The presence of primary Al3Sc andα-Al(Mn,Fe)Si particles contributed to the grain refinement of the alloy with an average grain size of 4.63μm.Upon aging treatment at 350°C for 2 h,the strength and elongation of the alloy were simultaneously improved due to the precipitation of Al3Sc nanoparticles and the formation of the 9R phase.This study demonstrates that the strength−plasticity trade-off of the aluminum alloy can be overcome by utilizing SLM technology and subsequent post-heat treatment to induce the formation of the long-period stacked ordered phase.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51031004,11004027,and 11074113)the National Basic Research Program of China (Grant Nos. 2011CB922101 and 2009CB929501)the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions,China
文摘The semi-quantum two-orbital exchange model is used to investigate the effect of small rare-earth ion substitution on orthorhombic RMnO 3 with A-type antiferromagnetic order,using the Monte Carlo algorithm,exact diagonalization,and zero-temperature optimization approaches.It is revealed that the substitution results in a rich multiferroic phase diagram where the coexisting A-type antiferromagnetic phase and spiral spin phase,pure spiral spin phase,coexisting spiral spin phase,the E-type antiferromagnetic phase,and the pure E-type antiferromagnetic phase emerge in sequence.The multiferroic phase transitions modulate substantially the electric polarization,which is consistent qualitatively with recent experiments.
基金Item Sponsored by National Natural Science Foundation of China(50904006)The Fundamental Research Funds for the Central Universities of China(FRT-TP-10-001A)
文摘Low-carbon Cr-Mo micro-alloyed deep drawing dual-phase steels were designed in laboratory. As the mi- crostructure and texture evolution in hot-rolled strips and annealed sheets were investigated using SEM, TEM and XRD technologies, the attribution of solute Mo and MoC particles to DP sheets' drawing capacity was investigated. The precipitation thermodynamics were also calculated by Thermo-calc software. Results show that the precipitates in hot-rolled strips mainly are MoC, AIN and MnS, and with the increase of Mo addition, finer and denser MoC par- ticles precipitated in matrix and along grain boundaries of ferrite more easily. Weak textures are shown in the hot- rolled strips, and {112}~110~ and {223}%110~ components tend to be stable in subsequent cold rolling process. During annealing, on one hand, the development of ~lll~//ND texture is suppressed because finer MoC particles prevent the grain boundary migration. On the other hand, unfavorable texture {001 } %110:〉 significantly reduces with Mo increasing, which is attributed to that part of solution C in matrix has been fixed during recrystallization. In addition, the addition of Mo can enhance hardenability strongly and MoC easily re-dissolve at high temperature, which is favor to form martensite in dual-phase steel.
文摘Ferritic heat resistant steels involving precipitation of intermetallic phases have drawn a growing interest for the enhancement of creep strength, while the brittleness of the intermetallic phases may lower the toughness of the alloy. Therefore, it is necessary to optimize the dispersion characteristics of the intermetallics phase through microstructural control to minimize the trade-off between the strength and toughness. The effects of -Fe matrix substructures on the precipitation sequence, morphology, dispersion characteristics, and the stability of the intermetallic phases are investigated in Fe-Cr-W-Co-Si system. The precipitates of the Si-free Fe-10Cr-l.4W-4.5Co (at%) alloy aged at 873K are the R-phase but those of the Si-added Fe-10Cr-l.4W-4.5Co-0.3Si (at%) alloy are the icosahedral quasicrystalline phase. The precipitates in both the Si-free and Si-added alloys aged at 973K are the Laves phase. Matrix of the alloys is controlled by heat treatments as to provide three types of matrix substructures; ferrite, ferrite/martensite mixture and martensite. The hardening behavior of the alloys depends on the matrix substructures and is independent of the kinds of precipitates. In the alloys with ferrite matrix, the peak of hardness during aging at 873K shifts to longer aging time in comparison with that in the alloys with lath martensite matrix which contain numbers of nucleation sites.
文摘A high density of {110} shear planes has been observed in the R-phase (Al5CuLi3)following phase transformation from the AlCuLi icosahedral Phase. The Present paper shows that the atomic arrangement in the vicinity of the shear planes can be described as a two-dimensional periodic array of atom clusters with 5-fold symmetry. This result is obtained by projecting along the [1. 618...01] direction of the atomic positions from four adjacent lattice planes that cross the shear plane. The projection reveals that the shear plane consists of pentagonal arrangements of double triacontahedra,each pentagon incorporating 606 atoms. The calculated diffraction pattern from the pentagon has approximate 10-fold symmetry characteristic of a quasicrystal.
文摘The precipitation behaviour of Fe-Cr-Mo and Fe-Cr-W alloys during aging has been ex- perimentally studied.It was found that in the early stage of aging,a metastable R phase pre- cipitated in both alloys,it was transformed into stable μ-phase,Laves-phase,X-phase or σ-phase in the later stages.The crystallographic structure of metastable R-phase is rhombohedral with lattice parameters of a=0.9075 nm and α=74.45°.The chemical compo- sition of R-phase is Fe-(27.5—34.9)Mo-(0—25.5)Cr and Fe-(28.9—33.0)W-(9.36— 21.0)Cr in at.-% in Fe-Cr-Mo and Fe-Cr-W system,respectively.
文摘Ti-50.6Ni(molar fraction, %) shape memory alloy solution treated at 850℃ for 1h followed by ageing treatment at 450℃ for 3h was studied with differential scanning calorimetry(DSC), X-ray diffractometry(XRD) and transmission electron microscopy(TEM). DSC measurement reveals two separate transformation peaks. XRD and TEM demonstrate that a three-stage transformation occurs. The Ti3Ni4 precipitates are coherent with the R-phase. The crystal structure of R-phase was analyzed by two diffraction patterns method. The diffraction patterns of R-phase were obtained in detail from the same region.
基金supported by the Major Science and Technology Programs for Water Pollution Control and Management of China(No.2012ZX07205-001)the National Science and Technology Support Program(No.2008BADC4B18)
文摘The microbial community structures in an integrated two-phase anaerobic reactor(ITPAR)were investigated by 16 S r DNA clone library technology. The 75 L reactor was designed with a 25 L rotating acidogenic unit at the top and a 50 L conventional upflow methanogenic unit at the bottom, with a recirculation connected to the two units. The reactor had been operated for 21 stages to co-digest fruit/vegetable wastes and wheat straw, which showed a very good biogas production and decomposition of cellulosic materials. The results showed that many kinds of cellulose and glycan decomposition bacteria related with Bacteroidales,Clostridiales and Syntrophobacterales were dominated in the reactor, with more bacteria community diversities in the acidogenic unit. The methanogens were mostly related with Methanosaeta, Methanosarcina, Methanoculleus, Methanospirillum and Methanobacterium; the predominating genus Methanosaeta, accounting for 40.5%, 54.2%, 73.6% and 78.7% in four samples from top to bottom, indicated a major methanogenesis pathway by acetoclastic methanogenesis in the methanogenic unit. The beta diversity indexes illustrated a more similar distribution of bacterial communities than that of methanogens between acidogenic unit and methanogenic unit. The differentiation of methanogenic community composition in two phases, as well as pH values and volatile fatty acid(VFA) concentrations confirmed the phase separation of the ITPAR. Overall, the results of this study demonstrated that the special designing of ITPAR maintained a sufficient number of methanogens, more diverse communities and stronger syntrophic associations among microorganisms, which made two phase anaerobic digestion of cellulosic materials more efficient.
基金Project(50771027)supported by the National Basic Research Program of ChinaProject(50771027)supported by the National Natural Science Foundation of China
文摘The Co-Cr-W ternary system was critically assessed using the CALPHAD technique.The solution phases including the liquid,γ-Co,ε-Co and α-Cr were described by a substitutional solution model.The σ,μ and R phases were described by three-sublattice models of(Co,W)8(Cr,W)4(Co,Cr,W)18,(Co,Cr,W)7W2(Co,Cr,W)4 and(Co,W)27(Cr,W)14(Co,Cr,W)12,respectively,in order to reproduce their homogeneity ranges.A self-consistent set of thermodynamic parameters for each phase was derived.The calculated isothermal sections at 1 000,1 200 and 1 350 ℃ are in good agreement with the experimental data.A eutectoid reaction of R μ+γ-Co+σ in this ternary system was predicted to occur at 1 022 ℃.
文摘The transformation behavior of Ni Ti Nb based alloys was analysed.The absence of R phase transformation in these alloys is related to the stress field in the NiTi matrix.The thermal mismatch stress was calculated by the Eshelby method in Ni Ti Nb alloys.The results show that the mean matrix elastic stress field is isostatic tensile,there is no preferred stress in [111] B 2 direction.The mean matrix stress from the thermal misfit between NiTi matrix and β Nb particle is too small to induce dislocations.All the factors tend to inhibit R phase transformation.