The spectral radius of a graph is the maximum eigenvalues of its adjacency matrix. In this paper, using the property of quotient graph, the sharp upper bounds for the spectral radii of some adhesive graphs are determi...The spectral radius of a graph is the maximum eigenvalues of its adjacency matrix. In this paper, using the property of quotient graph, the sharp upper bounds for the spectral radii of some adhesive graphs are determined.展开更多
Characterizing regular covers of symmetric graphs is one of the fundamental topics in the field of algebraic graph theory, and is often a key step for approaching general symmetric graphs. Complete graphs, which are t...Characterizing regular covers of symmetric graphs is one of the fundamental topics in the field of algebraic graph theory, and is often a key step for approaching general symmetric graphs. Complete graphs, which are typical symmetric graphs, naturally appear in the study of many symmetric graphs as normal quotient graphs. In this paper, a characterization of edge-transitive cyclic covers of complete graphs with prime power order is given by using the techniques of finite group theory and the related properties of coset graphs. Certain previous results are generalized and some new families of examples are founded.展开更多
In this paper, a necessary and sufficient condition is given for a commutative Artinian local ring whose annihilating-ideal graph is a star graph. Also, a complete char- acterization is established for a finite local ...In this paper, a necessary and sufficient condition is given for a commutative Artinian local ring whose annihilating-ideal graph is a star graph. Also, a complete char- acterization is established for a finite local ring whose annihilating-ideal graph is a star graph.展开更多
文摘The spectral radius of a graph is the maximum eigenvalues of its adjacency matrix. In this paper, using the property of quotient graph, the sharp upper bounds for the spectral radii of some adhesive graphs are determined.
文摘Characterizing regular covers of symmetric graphs is one of the fundamental topics in the field of algebraic graph theory, and is often a key step for approaching general symmetric graphs. Complete graphs, which are typical symmetric graphs, naturally appear in the study of many symmetric graphs as normal quotient graphs. In this paper, a characterization of edge-transitive cyclic covers of complete graphs with prime power order is given by using the techniques of finite group theory and the related properties of coset graphs. Certain previous results are generalized and some new families of examples are founded.
基金The first author is supported by Fundamental Research Funds for the Central Universi- ties (No. XDJK2013C060), Chongqing Research Program of Application Foundation and Advanced Technology (No. cstc2014jcyjA00028) and Scientific Research Foundation for Doctors of Southwest University (No. SWUl12054). The second author is supported by National Natural Science Foundation of China (No. 11271250).
文摘In this paper, a necessary and sufficient condition is given for a commutative Artinian local ring whose annihilating-ideal graph is a star graph. Also, a complete char- acterization is established for a finite local ring whose annihilating-ideal graph is a star graph.