Into the study of quasi-relaxation, in the past researches it has been concluded that the condition of meta-stability in the metallic specimen is given by the plasticity explained by the plastic energy in the process ...Into the study of quasi-relaxation, in the past researches it has been concluded that the condition of meta-stability in the metallic specimen is given by the plasticity explained by the plastic energy in the process of the quasi-relaxation. It is calculated through quasi-relaxation functional of this energy to obtain a spectra in the space D(σ – ε;t), that induces the existence of functions φ(t), and Ψ(t), related with the fundamental curves of quasi-relaxation given by σ(t), with their poles in , which is got in the maximum of stress given by σ0 = σ1. Also the tensor of plastic deformation that represents the plastic load during the application of specimen machine, cannot be obtained without poles in the space D(σ;t), corresponding the curves calculated into the space D(σ – ε;t), by curves that in the kinetic process of quasi-relaxation are represented by experimental curves in coordinates log σ – t. This situation cannot be eluded, since in this phenomena exist dislocations that go conform fatigue in the nano-crystalline structure of metals. From this point of view, is necessary to obtain a spectral study related to the energy using functions that permits the modeling and compute the states of quasi-relaxation included in the poles in the deformation problem to complete the solutions in the space D(σ – ε;t), and try a new method of solution of the differential equations of the quasi-relaxation analysis. In a nearly future development, the information obtained by this spectral study (by our integral transforms), will be able to give place to the programming through the spectral encoding of the materials in the meta-stability state, which is propitious to a nano-technological transformation of materials, concrete case, some metals.展开更多
Nonlinear transforms have significantly advanced learned image compression(LIC),particularly using residual blocks.This transform enhances the nonlinear expression ability and obtain compact feature representation by ...Nonlinear transforms have significantly advanced learned image compression(LIC),particularly using residual blocks.This transform enhances the nonlinear expression ability and obtain compact feature representation by enlarging the receptive field,which indicates how the convolution process extracts features in a high dimensional feature space.However,its functionality is restricted to the spatial dimension and network depth,limiting further improvements in network performance due to insufficient information interaction and representation.Crucially,the potential of high dimensional feature space in the channel dimension and the exploration of network width/resolution remain largely untapped.In this paper,we consider nonlinear transforms from the perspective of feature space,defining high-dimensional feature spaces in different dimensions and investigating the specific effects.Firstly,we introduce the dimension increasing and decreasing transforms in both channel and spatial dimensions to obtain high dimensional feature space and achieve better feature extraction.Secondly,we design a channel-spatial fusion residual transform(CSR),which incorporates multi-dimensional transforms for a more effective representation.Furthermore,we simplify the proposed fusion transform to obtain a slim architecture(CSR-sm),balancing network complexity and compression performance.Finally,we build the overall network with stacked CSR transforms to achieve better compression and reconstruction.Experimental results demonstrate that the proposed method can achieve superior ratedistortion performance compared to the existing LIC methods and traditional codecs.Specifically,our proposed method achieves 9.38%BD-rate reduction over VVC on Kodak dataset.展开更多
Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approach...Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments.展开更多
Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postn...Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postnatal neurogenesis remains unclear.In this study,to define the precise role of transforming growth factor-βsignaling in postnatal neurogenesis at distinct stages of the neurogenic cascade both in vitro and in vivo,we developed two novel inducible and cell type-specific mouse models to specifically silence transforming growth factor-βsignaling in neural stem cells in(mGFAPcre-ALK5fl/fl-Ai9)or immature neuroblasts in(DCXcreERT2-ALK5fl/fl-Ai9).Our data showed that exogenous transforming growth factor-βtreatment led to inhibition of the proliferation of primary neural stem cells while stimulating their migration.These effects were abolished in activin-like kinase 5(ALK5)knockout primary neural stem cells.Consistent with this,inhibition of transforming growth factor-βsignaling with SB-431542 in wild-type neural stem cells stimulated proliferation while inhibited the migration of neural stem cells.Interestingly,deletion of transforming growth factor-βreceptor in neural stem cells in vivo inhibited the migration of postnatal born neurons in mGFAPcre-ALK5fl/fl-Ai9 mice,while abolishment of transforming growth factor-βsignaling in immature neuroblasts in DCXcreERT2-ALK5fl/fl-Ai9 mice did not affect the migration of these cells in the hippocampus.In summary,our data supports a dual role of transforming growth factor-βsignaling in the proliferation and migration of neural stem cells in vitro.Moreover,our data provides novel insights on cell type-specific-dependent requirements of transforming growth factor-βsignaling on neural stem cell proliferation and migration in vivo.展开更多
Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics.While MRI-based automatic brain tumor segmentation technology reduces the b...Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics.While MRI-based automatic brain tumor segmentation technology reduces the burden on medical staff and provides quantitative information,existing methodologies and recent models still struggle to accurately capture and classify the fine boundaries and diverse morphologies of tumors.In order to address these challenges and maximize the performance of brain tumor segmentation,this research introduces a novel SwinUNETR-based model by integrating a new decoder block,the Hierarchical Channel-wise Attention Decoder(HCAD),into a powerful SwinUNETR encoder.The HCAD decoder block utilizes hierarchical features and channelspecific attention mechanisms to further fuse information at different scales transmitted from the encoder and preserve spatial details throughout the reconstruction phase.Rigorous evaluations on the recent BraTS GLI datasets demonstrate that the proposed SwinHCAD model achieved superior and improved segmentation accuracy on both the Dice score and HD95 metrics across all tumor subregions(WT,TC,and ET)compared to baseline models.In particular,the rationale and contribution of the model design were clarified through ablation studies to verify the effectiveness of the proposed HCAD decoder block.The results of this study are expected to greatly contribute to enhancing the efficiency of clinical diagnosis and treatment planning by increasing the precision of automated brain tumor segmentation.展开更多
With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contex...With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contextual understanding,sequential dependencies,and/or data imbalance.This makes distinction between genuine and fabricated news a challenging task.To address this problem,we propose a novel hybrid architecture,T5-SA-LSTM,which synergistically integrates the T5 Transformer for semantically rich contextual embedding with the Self-Attentionenhanced(SA)Long Short-Term Memory(LSTM).The LSTM is trained using the Adam optimizer,which provides faster and more stable convergence compared to the Stochastic Gradient Descend(SGD)and Root Mean Square Propagation(RMSProp).The WELFake and FakeNewsPrediction datasets are used,which consist of labeled news articles having fake and real news samples.Tokenization and Synthetic Minority Over-sampling Technique(SMOTE)methods are used for data preprocessing to ensure linguistic normalization and class imbalance.The incorporation of the Self-Attention(SA)mechanism enables the model to highlight critical words and phrases,thereby enhancing predictive accuracy.The proposed model is evaluated using accuracy,precision,recall(sensitivity),and F1-score as performance metrics.The model achieved 99%accuracy on the WELFake dataset and 96.5%accuracy on the FakeNewsPrediction dataset.It outperformed the competitive schemes such as T5-SA-LSTM(RMSProp),T5-SA-LSTM(SGD)and some other models.展开更多
Combining wavelet transforms with conventional log differential curves is used to identify fractured sections is a new idea.In this paper,we first compute the mother wavelet transform of conventional logs and the wave...Combining wavelet transforms with conventional log differential curves is used to identify fractured sections is a new idea.In this paper,we first compute the mother wavelet transform of conventional logs and the wavelet decomposed signals are compared with fractures identified from image logs to determine the fracture-matched mother wavelet.Then the mother wavelet-based decomposed signal combined with the differential curves of conventional well logs create a fracture indicator curve,identifying the fractured zone.Finally the fracture density can be precisely evaluated by the linear relationship of the indicator curve and image log fracture density.This method has been successfully used to evaluate igneous reservoir fractures in the southern Songnan basin and the calculated density from the indicator curve and density from image logs are both basically consistent.展开更多
针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer...针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer结构的全局语义特征修复模块,利用双向自回归机制与掩码语言模型(masked language modeling,MLM),提出改进的多头注意力全局语义壁画修复模块,提高对全局语义特征的修复能力.然后,构建了由门控卷积和残差模块组成的全局语义增强模块,增强全局语义特征一致性约束.最后,设计局部细节修复模块,采用大核注意力机制(large kernel attention,LKA)与快速傅里叶卷积提高细节特征的捕获能力,同时减少局部细节信息的丢失,提升修复壁画局部和整体特征的一致性.通过对敦煌壁画数字化修复实验,结果表明,所提算法修复性能更优,客观评价指标均优于比较算法.展开更多
文摘Into the study of quasi-relaxation, in the past researches it has been concluded that the condition of meta-stability in the metallic specimen is given by the plasticity explained by the plastic energy in the process of the quasi-relaxation. It is calculated through quasi-relaxation functional of this energy to obtain a spectra in the space D(σ – ε;t), that induces the existence of functions φ(t), and Ψ(t), related with the fundamental curves of quasi-relaxation given by σ(t), with their poles in , which is got in the maximum of stress given by σ0 = σ1. Also the tensor of plastic deformation that represents the plastic load during the application of specimen machine, cannot be obtained without poles in the space D(σ;t), corresponding the curves calculated into the space D(σ – ε;t), by curves that in the kinetic process of quasi-relaxation are represented by experimental curves in coordinates log σ – t. This situation cannot be eluded, since in this phenomena exist dislocations that go conform fatigue in the nano-crystalline structure of metals. From this point of view, is necessary to obtain a spectral study related to the energy using functions that permits the modeling and compute the states of quasi-relaxation included in the poles in the deformation problem to complete the solutions in the space D(σ – ε;t), and try a new method of solution of the differential equations of the quasi-relaxation analysis. In a nearly future development, the information obtained by this spectral study (by our integral transforms), will be able to give place to the programming through the spectral encoding of the materials in the meta-stability state, which is propitious to a nano-technological transformation of materials, concrete case, some metals.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.62031013)Guangdong Province Key Construction Discipline Scientific Research Capacity Improvement Project(Grant No.2022ZDJS117).
文摘Nonlinear transforms have significantly advanced learned image compression(LIC),particularly using residual blocks.This transform enhances the nonlinear expression ability and obtain compact feature representation by enlarging the receptive field,which indicates how the convolution process extracts features in a high dimensional feature space.However,its functionality is restricted to the spatial dimension and network depth,limiting further improvements in network performance due to insufficient information interaction and representation.Crucially,the potential of high dimensional feature space in the channel dimension and the exploration of network width/resolution remain largely untapped.In this paper,we consider nonlinear transforms from the perspective of feature space,defining high-dimensional feature spaces in different dimensions and investigating the specific effects.Firstly,we introduce the dimension increasing and decreasing transforms in both channel and spatial dimensions to obtain high dimensional feature space and achieve better feature extraction.Secondly,we design a channel-spatial fusion residual transform(CSR),which incorporates multi-dimensional transforms for a more effective representation.Furthermore,we simplify the proposed fusion transform to obtain a slim architecture(CSR-sm),balancing network complexity and compression performance.Finally,we build the overall network with stacked CSR transforms to achieve better compression and reconstruction.Experimental results demonstrate that the proposed method can achieve superior ratedistortion performance compared to the existing LIC methods and traditional codecs.Specifically,our proposed method achieves 9.38%BD-rate reduction over VVC on Kodak dataset.
基金funded by the National Natural Science Foundation of China,grant numbers 52374156 and 62476005。
文摘Images taken in dim environments frequently exhibit issues like insufficient brightness,noise,color shifts,and loss of detail.These problems pose significant challenges to dark image enhancement tasks.Current approaches,while effective in global illumination modeling,often struggle to simultaneously suppress noise and preserve structural details,especially under heterogeneous lighting.Furthermore,misalignment between luminance and color channels introduces additional challenges to accurate enhancement.In response to the aforementioned difficulties,we introduce a single-stage framework,M2ATNet,using the multi-scale multi-attention and Transformer architecture.First,to address the problems of texture blurring and residual noise,we design a multi-scale multi-attention denoising module(MMAD),which is applied separately to the luminance and color channels to enhance the structural and texture modeling capabilities.Secondly,to solve the non-alignment problem of the luminance and color channels,we introduce the multi-channel feature fusion Transformer(CFFT)module,which effectively recovers the dark details and corrects the color shifts through cross-channel alignment and deep feature interaction.To guide the model to learn more stably and efficiently,we also fuse multiple types of loss functions to form a hybrid loss term.We extensively evaluate the proposed method on various standard datasets,including LOL-v1,LOL-v2,DICM,LIME,and NPE.Evaluation in terms of numerical metrics and visual quality demonstrate that M2ATNet consistently outperforms existing advanced approaches.Ablation studies further confirm the critical roles played by the MMAD and CFFT modules to detail preservation and visual fidelity under challenging illumination-deficient environments.
基金supported by NIH grants,Nos.R01NS125074,R01AG083164,R01NS107365,and R21NS127177(to YL),1F31NS129204-01A1(to KW)and Albert Ryan Fellowship(to KW).
文摘Adult neurogenesis continuously produces new neurons critical for cognitive plasticity in adult rodents.While it is known transforming growth factor-βsignaling is important in embryonic neurogenesis,its role in postnatal neurogenesis remains unclear.In this study,to define the precise role of transforming growth factor-βsignaling in postnatal neurogenesis at distinct stages of the neurogenic cascade both in vitro and in vivo,we developed two novel inducible and cell type-specific mouse models to specifically silence transforming growth factor-βsignaling in neural stem cells in(mGFAPcre-ALK5fl/fl-Ai9)or immature neuroblasts in(DCXcreERT2-ALK5fl/fl-Ai9).Our data showed that exogenous transforming growth factor-βtreatment led to inhibition of the proliferation of primary neural stem cells while stimulating their migration.These effects were abolished in activin-like kinase 5(ALK5)knockout primary neural stem cells.Consistent with this,inhibition of transforming growth factor-βsignaling with SB-431542 in wild-type neural stem cells stimulated proliferation while inhibited the migration of neural stem cells.Interestingly,deletion of transforming growth factor-βreceptor in neural stem cells in vivo inhibited the migration of postnatal born neurons in mGFAPcre-ALK5fl/fl-Ai9 mice,while abolishment of transforming growth factor-βsignaling in immature neuroblasts in DCXcreERT2-ALK5fl/fl-Ai9 mice did not affect the migration of these cells in the hippocampus.In summary,our data supports a dual role of transforming growth factor-βsignaling in the proliferation and migration of neural stem cells in vitro.Moreover,our data provides novel insights on cell type-specific-dependent requirements of transforming growth factor-βsignaling on neural stem cell proliferation and migration in vivo.
基金supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)under the Metaverse Support Program to Nurture the Best Talents(IITP-2024-RS-2023-00254529)grant funded by the Korea government(MSIT).
文摘Brain tumors require precise segmentation for diagnosis and treatment plans due to their complex morphology and heterogeneous characteristics.While MRI-based automatic brain tumor segmentation technology reduces the burden on medical staff and provides quantitative information,existing methodologies and recent models still struggle to accurately capture and classify the fine boundaries and diverse morphologies of tumors.In order to address these challenges and maximize the performance of brain tumor segmentation,this research introduces a novel SwinUNETR-based model by integrating a new decoder block,the Hierarchical Channel-wise Attention Decoder(HCAD),into a powerful SwinUNETR encoder.The HCAD decoder block utilizes hierarchical features and channelspecific attention mechanisms to further fuse information at different scales transmitted from the encoder and preserve spatial details throughout the reconstruction phase.Rigorous evaluations on the recent BraTS GLI datasets demonstrate that the proposed SwinHCAD model achieved superior and improved segmentation accuracy on both the Dice score and HD95 metrics across all tumor subregions(WT,TC,and ET)compared to baseline models.In particular,the rationale and contribution of the model design were clarified through ablation studies to verify the effectiveness of the proposed HCAD decoder block.The results of this study are expected to greatly contribute to enhancing the efficiency of clinical diagnosis and treatment planning by increasing the precision of automated brain tumor segmentation.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R195)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contextual understanding,sequential dependencies,and/or data imbalance.This makes distinction between genuine and fabricated news a challenging task.To address this problem,we propose a novel hybrid architecture,T5-SA-LSTM,which synergistically integrates the T5 Transformer for semantically rich contextual embedding with the Self-Attentionenhanced(SA)Long Short-Term Memory(LSTM).The LSTM is trained using the Adam optimizer,which provides faster and more stable convergence compared to the Stochastic Gradient Descend(SGD)and Root Mean Square Propagation(RMSProp).The WELFake and FakeNewsPrediction datasets are used,which consist of labeled news articles having fake and real news samples.Tokenization and Synthetic Minority Over-sampling Technique(SMOTE)methods are used for data preprocessing to ensure linguistic normalization and class imbalance.The incorporation of the Self-Attention(SA)mechanism enables the model to highlight critical words and phrases,thereby enhancing predictive accuracy.The proposed model is evaluated using accuracy,precision,recall(sensitivity),and F1-score as performance metrics.The model achieved 99%accuracy on the WELFake dataset and 96.5%accuracy on the FakeNewsPrediction dataset.It outperformed the competitive schemes such as T5-SA-LSTM(RMSProp),T5-SA-LSTM(SGD)and some other models.
基金sponsored by National Science and Technology Major Project of China (No. 2008 ZX 05009-001)
文摘Combining wavelet transforms with conventional log differential curves is used to identify fractured sections is a new idea.In this paper,we first compute the mother wavelet transform of conventional logs and the wavelet decomposed signals are compared with fractures identified from image logs to determine the fracture-matched mother wavelet.Then the mother wavelet-based decomposed signal combined with the differential curves of conventional well logs create a fracture indicator curve,identifying the fractured zone.Finally the fracture density can be precisely evaluated by the linear relationship of the indicator curve and image log fracture density.This method has been successfully used to evaluate igneous reservoir fractures in the southern Songnan basin and the calculated density from the indicator curve and density from image logs are both basically consistent.
文摘针对现有深度学习算法在壁画修复时,存在全局语义一致性约束不足及局部特征提取不充分,导致修复后的壁画易出现边界效应和细节模糊等问题,提出一种双向自回归Transformer与快速傅里叶卷积增强的壁画修复方法.首先,设计基于Transformer结构的全局语义特征修复模块,利用双向自回归机制与掩码语言模型(masked language modeling,MLM),提出改进的多头注意力全局语义壁画修复模块,提高对全局语义特征的修复能力.然后,构建了由门控卷积和残差模块组成的全局语义增强模块,增强全局语义特征一致性约束.最后,设计局部细节修复模块,采用大核注意力机制(large kernel attention,LKA)与快速傅里叶卷积提高细节特征的捕获能力,同时减少局部细节信息的丢失,提升修复壁画局部和整体特征的一致性.通过对敦煌壁画数字化修复实验,结果表明,所提算法修复性能更优,客观评价指标均优于比较算法.