166.6-MHz quarter-waveβ=1 superconducting cavities have been adopted for the High Energy Photon Source,a 6-GeV diffraction-limited synchrotron light source currently under construction.A large helium jacket was requi...166.6-MHz quarter-waveβ=1 superconducting cavities have been adopted for the High Energy Photon Source,a 6-GeV diffraction-limited synchrotron light source currently under construction.A large helium jacket was required to accommodate the enlarged cavity beam pipe for the heavy damping of higher-order modes;the original electric-probe pickup thus becomes inevitably long with unfavorable mechanical properties.Relocated to an existing high-pressure-rinsing port,a magnetic-loop pickup was designed,characterized by low radio-frequency and cryogenic losses and being multipacting-free and insensitive to manufacturing and assembly tolerances.The consequent removal of the original pickup port from the cavity largely simplified the helium jacket fabrication and may also reduce cavity contamination.This paper presents a comprehensive design of a low-loss magnetic-coupling pickup for quarter-waveβ=1 superconducting cavities.The design can also be applied to other non-elliptical structures.展开更多
This article deals with designing a broadband and high efficiency metal multi-layer dielectric grating (MMDG) used to compress and stretch an ultrashort laser pulse. The diffraction characteristics of the IVIMDG are...This article deals with designing a broadband and high efficiency metal multi-layer dielectric grating (MMDG) used to compress and stretch an ultrashort laser pulse. The diffraction characteristics of the IVIMDG are analysed by using the rigorous coupled-wave method. The multi-layer dielectric used as the reflective mirror is made up of non- quarter-wave coatings. Taking the diffraction efficiency of the -1 order as the value of merit function, the parameters such as groove depth, residual thickness, duty cycle, and reflective mirror are optimized to obtain broadband and high diffraction efficiency. The optimized MMDG shows an ultra-broadband working spectrum with the average efficiency exceeding 97% over 160 nm wavelength centred at 1053 nm and TE polarization. The optimized MMDG should be useful for chirped pulse amplification.展开更多
A high-birefringence fiber,Tb:YAG crystal-derived silica fiber(TYDSF),was fabricated by CO_(2)laser-heating drawing technique.Its linear birefringence was 2.99×10^(-5),and it was used to fabricate an all-fiber qu...A high-birefringence fiber,Tb:YAG crystal-derived silica fiber(TYDSF),was fabricated by CO_(2)laser-heating drawing technique.Its linear birefringence was 2.99×10^(-5),and it was used to fabricate an all-fiber quarter-wave plate(QWP)device.The polarization extinction ratio(PER)of the device was 0.29 dB,and its ellipticity was 44.26°at 25℃.In the temperature range of-5℃to 200℃,its PER was always less than 0.80 dB,and the fluctuation of PER and ellipticity was also small.Compared with QWPs fabricated with PANDA-type polarization-maintaining fiber(PMF)and elliptical-core PMF,the performance of TYDSF QWP was least sensitive to temperature.Furthermore,the TYDSF QWP was used in a high-power laser system,still maintaining good circular polarization state,and the nonlinear effects were suppressed in the system.The experimental results are of great significance to high-power lasers,fiber-optic current sensors,etc.,in harsh environments.展开更多
Acoustic characteristics of a thrust chamber with quarter-wave resonators are numerically studied based on the unsteady Reynolds-averaged Navier-Stokes(URANS) method. Organized pressure disturbance model and constant-...Acoustic characteristics of a thrust chamber with quarter-wave resonators are numerically studied based on the unsteady Reynolds-averaged Navier-Stokes(URANS) method. Organized pressure disturbance model and constant-volume bomb model are applied as artificial disturbances to excite pressure oscillations in the chamber. Eigenfrequencies and amplitudes of acoustic modes of the chamber are obtained by fast fourier transform(FFT) analysis, while damping characteristics are evaluated by the half-power bandwidth method. Predicted damping capacities of the chamber with and without quarter-wave resonators agree well with experimental results. Pressure oscillations can be controlled by a quarter-wave resonator mainly through reducing the amplitude of target acoustic mode, rather than increasing damping capacity of the chamber. Major damping mechanism of the resonator is cutting down pressure peak of target acoustic mode and raising up its pressure trough(CPRT);therefore the amplitude of target acoustic mode is reduced significantly. Moreover, acoustic energy can be dissipated by vortex at the orifice and by viscosity on the surface of a resonator, which increase damping capacity of the chamber slightly. Under the condition with multi-modes pressure oscillations, a resonator can still suppress pressure oscillations of target acoustic mode through CPRT.However, it may enhance pressure oscillations of other modes due to redistribution of oscillation energy among all acoustic modes.展开更多
Superconducting quarter-wave resonators,due to their compactness and their convenient shape for tuning and coupling,are very attractive for low-β beam acceleration.In this paper,two types of cavities with different g...Superconducting quarter-wave resonators,due to their compactness and their convenient shape for tuning and coupling,are very attractive for low-β beam acceleration.In this paper,two types of cavities with different geometry have been numerically simulated the first type with larger capacitive load in the beam line and the second type of lollipop-shape for 100 MHz,β=0.06 beams then the relative electromagnetic parameters and geometric sizes have been compared.It is found that the second type,whose structural design is optimized with the conical stem and shaping drift-tube,can support the better accelerating performance.At the end of the paper,some structural deformation effects on frequency shifts and appropriate solutions have been discussed.展开更多
The taper-shaped superconducting quarter wave resonators with frequency of 80.5 MHz, β of 0.041 and 0.085 have been pre-researched. The radio frequency (RF) design of the cavities has been completed, and the struct...The taper-shaped superconducting quarter wave resonators with frequency of 80.5 MHz, β of 0.041 and 0.085 have been pre-researched. The radio frequency (RF) design of the cavities has been completed, and the structural design is also an important aspect which will be discussed in the following. The frequency shift caused by the etching effects of the surface treatment, the helium bath pressure and the Lorentz force, and the mechanical modes caused by the microphonic excitation have been anMyzed. The results show that the frequency variation from the Lorentz force is not serious and stiffening rings are explored aimed at decreasing the deformation brought by the helium pressure and microphonic excitation.展开更多
The superconducting (SC) cavities currently used for the acceleration of protons at a low velocity range are based on half-wave resonators. Due to the rising demand on high current, the issue of beam loading and spa...The superconducting (SC) cavities currently used for the acceleration of protons at a low velocity range are based on half-wave resonators. Due to the rising demand on high current, the issue of beam loading and space-charge problems has arisen. Qualities of low cost and high accelerating efficiency are required for SC cavities, which are properly fitted by using SC quarter-wave resonators (QWR). We propose a concept of using QWRs with frequency 162.5 MHz to accelerate high current proton beams. The main factor limiting SC QWRs being applied to high current proton beams is vertical beam steering, which is dominantly caused by the magnetic field on axis. In this paper, we intend to analyze steering and eliminate it to verify the qualification of using QWRs to accelerate high intensity proton beams.展开更多
基金supported by High Energy Photon Source(HEPS)projecta major national science and technology infrastructure。
文摘166.6-MHz quarter-waveβ=1 superconducting cavities have been adopted for the High Energy Photon Source,a 6-GeV diffraction-limited synchrotron light source currently under construction.A large helium jacket was required to accommodate the enlarged cavity beam pipe for the heavy damping of higher-order modes;the original electric-probe pickup thus becomes inevitably long with unfavorable mechanical properties.Relocated to an existing high-pressure-rinsing port,a magnetic-loop pickup was designed,characterized by low radio-frequency and cryogenic losses and being multipacting-free and insensitive to manufacturing and assembly tolerances.The consequent removal of the original pickup port from the cavity largely simplified the helium jacket fabrication and may also reduce cavity contamination.This paper presents a comprehensive design of a low-loss magnetic-coupling pickup for quarter-waveβ=1 superconducting cavities.The design can also be applied to other non-elliptical structures.
基金Project supported by the Program of Qingdao Municipal Science and Technology Bureau, China (Grant No. 12-1-4-2-(15)-jch)the National Natural Science Foundation of China (Grant Nos. 11274188 and 10904080)the Taishan Scholars Program of Shandong Province, China
文摘This article deals with designing a broadband and high efficiency metal multi-layer dielectric grating (MMDG) used to compress and stretch an ultrashort laser pulse. The diffraction characteristics of the IVIMDG are analysed by using the rigorous coupled-wave method. The multi-layer dielectric used as the reflective mirror is made up of non- quarter-wave coatings. Taking the diffraction efficiency of the -1 order as the value of merit function, the parameters such as groove depth, residual thickness, duty cycle, and reflective mirror are optimized to obtain broadband and high diffraction efficiency. The optimized MMDG shows an ultra-broadband working spectrum with the average efficiency exceeding 97% over 160 nm wavelength centred at 1053 nm and TE polarization. The optimized MMDG should be useful for chirped pulse amplification.
基金supported by the National Natural Science Foundation of China(Nos.61935002,61975113,and 62275148)111 Project(No.D20031)+1 种基金the Shanghai Professional Technical Public Service Platform of Advanced Optical Waveguide Intelligent Manufacturing and Testing(No.19DZ2294000)the Jiangsu Province’s Industry Outlook and Key Core Technologies–Key Projects(No.BE2022055-4)。
文摘A high-birefringence fiber,Tb:YAG crystal-derived silica fiber(TYDSF),was fabricated by CO_(2)laser-heating drawing technique.Its linear birefringence was 2.99×10^(-5),and it was used to fabricate an all-fiber quarter-wave plate(QWP)device.The polarization extinction ratio(PER)of the device was 0.29 dB,and its ellipticity was 44.26°at 25℃.In the temperature range of-5℃to 200℃,its PER was always less than 0.80 dB,and the fluctuation of PER and ellipticity was also small.Compared with QWPs fabricated with PANDA-type polarization-maintaining fiber(PMF)and elliptical-core PMF,the performance of TYDSF QWP was least sensitive to temperature.Furthermore,the TYDSF QWP was used in a high-power laser system,still maintaining good circular polarization state,and the nonlinear effects were suppressed in the system.The experimental results are of great significance to high-power lasers,fiber-optic current sensors,etc.,in harsh environments.
基金supported by the National Natural Science Foundation of China (Grant No. 91841303)。
文摘Acoustic characteristics of a thrust chamber with quarter-wave resonators are numerically studied based on the unsteady Reynolds-averaged Navier-Stokes(URANS) method. Organized pressure disturbance model and constant-volume bomb model are applied as artificial disturbances to excite pressure oscillations in the chamber. Eigenfrequencies and amplitudes of acoustic modes of the chamber are obtained by fast fourier transform(FFT) analysis, while damping characteristics are evaluated by the half-power bandwidth method. Predicted damping capacities of the chamber with and without quarter-wave resonators agree well with experimental results. Pressure oscillations can be controlled by a quarter-wave resonator mainly through reducing the amplitude of target acoustic mode, rather than increasing damping capacity of the chamber. Major damping mechanism of the resonator is cutting down pressure peak of target acoustic mode and raising up its pressure trough(CPRT);therefore the amplitude of target acoustic mode is reduced significantly. Moreover, acoustic energy can be dissipated by vortex at the orifice and by viscosity on the surface of a resonator, which increase damping capacity of the chamber slightly. Under the condition with multi-modes pressure oscillations, a resonator can still suppress pressure oscillations of target acoustic mode through CPRT.However, it may enhance pressure oscillations of other modes due to redistribution of oscillation energy among all acoustic modes.
文摘Superconducting quarter-wave resonators,due to their compactness and their convenient shape for tuning and coupling,are very attractive for low-β beam acceleration.In this paper,two types of cavities with different geometry have been numerically simulated the first type with larger capacitive load in the beam line and the second type of lollipop-shape for 100 MHz,β=0.06 beams then the relative electromagnetic parameters and geometric sizes have been compared.It is found that the second type,whose structural design is optimized with the conical stem and shaping drift-tube,can support the better accelerating performance.At the end of the paper,some structural deformation effects on frequency shifts and appropriate solutions have been discussed.
基金National Natural Science Foundation of China (91026001)
文摘The taper-shaped superconducting quarter wave resonators with frequency of 80.5 MHz, β of 0.041 and 0.085 have been pre-researched. The radio frequency (RF) design of the cavities has been completed, and the structural design is also an important aspect which will be discussed in the following. The frequency shift caused by the etching effects of the surface treatment, the helium bath pressure and the Lorentz force, and the mechanical modes caused by the microphonic excitation have been anMyzed. The results show that the frequency variation from the Lorentz force is not serious and stiffening rings are explored aimed at decreasing the deformation brought by the helium pressure and microphonic excitation.
文摘The superconducting (SC) cavities currently used for the acceleration of protons at a low velocity range are based on half-wave resonators. Due to the rising demand on high current, the issue of beam loading and space-charge problems has arisen. Qualities of low cost and high accelerating efficiency are required for SC cavities, which are properly fitted by using SC quarter-wave resonators (QWR). We propose a concept of using QWRs with frequency 162.5 MHz to accelerate high current proton beams. The main factor limiting SC QWRs being applied to high current proton beams is vertical beam steering, which is dominantly caused by the magnetic field on axis. In this paper, we intend to analyze steering and eliminate it to verify the qualification of using QWRs to accelerate high intensity proton beams.