期刊文献+
共找到9,896篇文章
< 1 2 250 >
每页显示 20 50 100
Connecting Quantum Contextuality and Genuine Multipartite Nonlocality with the Quantumness Witness
1
作者 陈旭 苏洪轶 陈景灵 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第1期6-9,共4页
The Clauser Horne--Shimony-Holt-type noncontextuality inequality and the Svetliehny inequality are derived from the Alicki-van Ryn quantumness witness. Thus connections between quantumness and quantum contextuality, a... The Clauser Horne--Shimony-Holt-type noncontextuality inequality and the Svetliehny inequality are derived from the Alicki-van Ryn quantumness witness. Thus connections between quantumness and quantum contextuality, and between quantumness and genuine multipartite nonlocality are established. 展开更多
关键词 that or of on from it is Connecting Quantum Contextuality and Genuine Multipartite Nonlocality with the quantumness Witness have with form been
原文传递
Negativity of Quantumness and Non-Markovianity in a Qubit Coupled to a Thermal Ising Spin Bath System
2
作者 胡征达 张逸新 张业奇 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第11期634-640,共7页
We propose a scheme to characterize the non-Markovian dynamics and quantify the non-Markovianity via the non-classicality measured by the negativity of quantumness. By considering a qubit in contact with a critical Is... We propose a scheme to characterize the non-Markovian dynamics and quantify the non-Markovianity via the non-classicality measured by the negativity of quantumness. By considering a qubit in contact with a critical Ising spin bath and introducing an ancilla, we show that revivals of negativity of quantumness indicate the non-Markovian dynamics.Furthermore, a normalized measure of non-Markovianity based on the negativity of quantumness is introduced and the influences of bath criticality, bath temperature and bath size on the non-Markovianity are discussed. It is shown that,at the critical point, the decay of non-Markovianity versus the size of spin bath is the fastest and the non-Markovianity is exactly zero only in the thermodynamic limit. Besides, non-trivial behaviours of negativity of quantumness such as sudden change, double sudden changes and keeping constant are found for different relations between parameters of the initial state. Finally, how the non-classicality of the system is affected by a series of bang-bang pulses is also examined. 展开更多
关键词 non-Markovianity NEGATIVITY of quantumness critical SPIN BATH
原文传递
Detecting Quantumness in the n-cycle Exclusivity Graphs
3
作者 Jie Zhou Hui-Xian Meng Jing-Ling Chen 《Chinese Physics Letters》 SCIE CAS CSCD 2019年第8期19-22,共4页
Quantum contextuality is one kind of quantumness that distinguishes quantum mechanics from classical theory.As the simplest exclusivity graph,quantum contextuality of the n-cycle graph has been reviewed,while only for... Quantum contextuality is one kind of quantumness that distinguishes quantum mechanics from classical theory.As the simplest exclusivity graph,quantum contextuality of the n-cycle graph has been reviewed,while only for odd n the quantumness can be revealed.Motivated by this,we propose the degree of non-commutativity and the degree of uncertainty to measure the quantumness in the n-cycle graphs.As desired,these two measures can detect the quantumness of any n-cycle graph when n≥4. 展开更多
关键词 QUANTUM GRAPHS CYCLE
原文传递
Quantumness of gamma-ray and hard X-ray photon emission from 3D free-electron lattices
4
作者 LESHI ZHAO LINFENG ZHANG +1 位作者 HAITAN Xu ZHENG Li 《Photonics Research》 2025年第6期1510-1525,共16页
Crystalline undulator radiation(CUR)is emitted by charged particles channeling through a periodically bent crystal.We show that entangled high-energy photons of the order of 100 MeV can be generated from CUR and obtai... Crystalline undulator radiation(CUR)is emitted by charged particles channeling through a periodically bent crystal.We show that entangled high-energy photons of the order of 100 MeV can be generated from CUR and obtain the quantum entanglement properties of the double-photon emission of CUR with a nonperturbative quantum field theory. 展开更多
关键词 charged particles crystalline undulator radiation cur periodically bent crystalwe hard X ray photons crystalline undulator radiation nonperturbative quantum field theory quantum entanglement gamma ray photons
原文传递
Quantifying the quantumness of ensembles via unitary similarity invariant norms 被引量:1
5
作者 Xian-Fei Qi Ting Gao Feng-Li Yan 《Frontiers of physics》 SCIE CSCD 2018年第4期291-295,共5页
The quantification of the quantumness of a quantum ensemble has theoretical and practical signif- icance in quantum information theory. We propose herein a class of measures of the quantumness of quantum ensembles usi... The quantification of the quantumness of a quantum ensemble has theoretical and practical signif- icance in quantum information theory. We propose herein a class of measures of the quantumness of quantum ensembles using the unitary similarity invariant norms of the commutators of the con- stituent density operators of an ensemble. Rigorous proof shows that they share desirable properties for a measure of quantumness, such as positivity, unitary invariance, concavity under probabilistic union, convexity under state decomposition, decreasing under coarse graining, and increasing under fine graining. Several specific examples illustrate the applications of these measures of quantumness in studying quantum information. 展开更多
关键词 the quantumness of quantum ensemble measures of quantumness of quantum ensembles unitary similarity invariant norms
原文传递
Exploring Nanoscale Perovskite Materials for Next‑Generation Photodetectors:A Comprehensive Review and Future Directions 被引量:2
6
作者 Xin Li Sikandar Aftab +4 位作者 Maria Mukhtar Fahmid Kabir Muhammad Farooq Khan Hosameldin Helmy Hegazy Erdi Akman 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期46-108,共63页
The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(... The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications.These materials are promising candidates for next-generation photodetectors(PDs)due to their unique optoelectronic properties and flexible synthesis routes.This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures,including quantum dots,nanosheets,nanorods,nanowires,and nanocrystals.Through a thorough analysis of recent literature,the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation.In addition,it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems.This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability,making it a valuable resource for researchers. 展开更多
关键词 Nanoscale perovskites PHOTODETECTORS NANOSHEETS NANORODS NANOWIRES Quantum dots NANOCRYSTALS
在线阅读 下载PDF
Efficient Perovskite Quantum Dots Light-emitting Diodes:Challenges and Optimization 被引量:2
7
作者 LI Mengjiao WANG Ye +1 位作者 WANG Yakun LIAO Liangsheng 《发光学报》 北大核心 2025年第3期452-461,共10页
Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yiel... Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs. 展开更多
关键词 perovskite quantum dot light-emitting diodes(Pe-QLEDs) PHOTOLUMINESCENCE DEFECTS ion migration
在线阅读 下载PDF
USTER^(■) QUANTUM 3型电子清纱器的 实际应用及要点分析
8
作者 兰小鹏 刘倩 +2 位作者 王友明 陈培培 魏文丽 《纺织导报》 2025年第1期41-44,共4页
USTER^(■)QUANTUM 3型电子清纱器纱体功能有助于清纱曲线的设置,应用好USTER^(■)QUANTUM 3型电清要熟悉其特点。文章介绍了USTER^(■)QUANTUM 3型电子清纱器的纱体功能、利用清纱通道清除周期性纱疵以及非周期性密集纱疵的生产实践、... USTER^(■)QUANTUM 3型电子清纱器纱体功能有助于清纱曲线的设置,应用好USTER^(■)QUANTUM 3型电清要熟悉其特点。文章介绍了USTER^(■)QUANTUM 3型电子清纱器的纱体功能、利用清纱通道清除周期性纱疵以及非周期性密集纱疵的生产实践、利用电清统计功能指导生产管理的实践,并通过对纱体变异的分析,研究改善纱线质量、提升纱线品质的措施。 展开更多
关键词 USTER^(■)QUANTUM 3型电子清纱器 纱体 清纱曲线 纱疵
在线阅读 下载PDF
Correlation-Pattern-Based Orbital Angular Momentum Entanglement Measurement Through Neural Networks 被引量:2
9
作者 Jiaxian Zhao Zhifeng Liu +2 位作者 Chenghou Tu Yongnan Li Hui-Tian Wang 《Chinese Physics Letters》 2025年第3期23-28,共6页
High-dimensional(HD)entanglement of photonic orbital angular momentum(OAM)is pivotal for advancing quantum communication and information processing,but its characterization remains significant challenges due to the co... High-dimensional(HD)entanglement of photonic orbital angular momentum(OAM)is pivotal for advancing quantum communication and information processing,but its characterization remains significant challenges due to the complexity of quantum state tomography and experimental limitations such as low photon counts caused by losses.Here,we propose a pre-trained physics-informed neural network(PTPINN)framework that enables efficient and rapid reconstruction of HD-OAM entangled states under low photon counts.Experimental results show that the fidelity of five-dimensional OAM entanglement reaches F=0.958±0.010 even with an exposure time as short as 50 ms.This highlights the capability of PTPINN to achieve high-precision quantum state reconstruction with limited photons,owing to its innovative designs,thus overcoming the reliance on high photon counts typical of traditional methods.Our method provides a practical and scalable solution for high-fidelity characterization of HD-OAM entanglement in environments with low photon numbers and high noise,paving the way for robust long-distance quantum information transmission. 展开更多
关键词 QUANTUM MOMENTUM enable
原文传递
Multi-hop quantum teleportation based on HSES via GHZ-like states 被引量:1
10
作者 She-Xiang Jiang Xiao-Long Wei +1 位作者 Jin-Huan Li Shuai-Shuai Li 《Chinese Physics B》 2025年第1期60-70,共11页
Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum... Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol. 展开更多
关键词 multi-hop quantum teleportation GHZ-like state hierarchical simultaneous entanglement swapping IBM Quantum Experiment platform quantum state tomography
原文传递
Size matters:quantum confinement-driven dynamics in CsPbI_(3)quantum dot light-emitting diodes 被引量:1
11
作者 Shuo Li Wenxu Yin +1 位作者 Weitao Zheng Xiaoyu Zhang 《Journal of Semiconductors》 2025年第4期55-61,共7页
The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investiga... The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices. 展开更多
关键词 quantum confinement effect CsPbI_(3) quantum dot light-emitting diode
在线阅读 下载PDF
Carbon-based quantum dots/nanodots materials for potassium ion storage 被引量:1
12
作者 Zhanheng Yan Weiqing Su +6 位作者 Weiwei Xu Qianhui Mao Lisha Xue Huanxin Li Wuhua Liu Xiu Li Qiuhui Zhang 《Chinese Chemical Letters》 2025年第4期83-95,共13页
With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ... With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers. 展开更多
关键词 Quantum dots NANODOTS Potassium ion battery ANODE Composite material
原文传递
Intelligent Photonics:A Disruptive Technology to Shape the Present and Redefine the Future 被引量:1
13
作者 Danlin Xu Yuchen Ma +1 位作者 Guofan Jin Liangcai Cao 《Engineering》 2025年第3期186-213,共28页
Artificial intelligence(AI)has taken breathtaking leaps forward in recent years,evolving into a strategic technology for pioneering the future.The growing demand for computing power—especially in demanding inference ... Artificial intelligence(AI)has taken breathtaking leaps forward in recent years,evolving into a strategic technology for pioneering the future.The growing demand for computing power—especially in demanding inference tasks,exemplified by generative AI models such as ChatGPT—poses challenges for conventional electronic computing systems.Advances in photonics technology have ignited interest in investigating photonic computing as a promising AI computing modality.Through the profound fusion of AI and photonics technologies,intelligent photonics is developing as an emerging interdisciplinary field with significant potential to revolutionize practical applications.Deep learning,as a subset of AI,presents efficient avenues for optimizing photonic design,developing intelligent optical systems,and performing optical data processing and analysis.Employing AI in photonics can empower applications such as smartphone cameras,biomedical microscopy,and virtual and augmented reality displays.Conversely,leveraging photonics-based devices and systems for the physical implementation of neural networks enables high speed and low energy consumption.Applying photonics technology in AI computing is expected to have a transformative impact on diverse fields,including optical communications,automatic driving,and astronomical observation.Here,recent advances in intelligent photonics are presented from the perspective of the synergy between deep learning and metaphotonics,holography,and quantum photonics.This review also spotlights relevant applications and offers insights into challenges and prospects. 展开更多
关键词 Artificial intelligence Optical neural network Deep learning Metaphotonics HOLOGRAPHY Quantum photonics
在线阅读 下载PDF
Beyond the Cloud: Federated Learning and Edge AI for the Next Decade 被引量:1
14
作者 Sooraj George Thomas Praveen Kumar Myakala 《Journal of Computer and Communications》 2025年第2期37-50,共14页
As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by... As AI systems scale, the limitations of cloud-based architectures, including latency, bandwidth, and privacy concerns, demand decentralized alternatives. Federated learning (FL) and Edge AI provide a paradigm shift by combining privacy preserving training with efficient, on device computation. This paper introduces a cutting-edge FL-edge integration framework, achieving a 10% to 15% increase in model accuracy and reducing communication costs by 25% in heterogeneous environments. Blockchain based secure aggregation ensures robust and tamper-proof model updates, while exploratory quantum AI techniques enhance computational efficiency. By addressing key challenges such as device variability and non-IID data, this work sets the stage for the next generation of adaptive, privacy-first AI systems, with applications in IoT, healthcare, and autonomous systems. 展开更多
关键词 Federated Learning Edge AI Decentralized Computing Privacy-Preserving AI Blockchain Quantum AI
在线阅读 下载PDF
Charge carrier management via semiconducting matrix for efficient self-powered quantum dot infrared photodetectors 被引量:1
15
作者 Jianfeng Ding Xinying Liu +3 位作者 Yueyue Gao Chen Dong Gentian Yue Furui Tan 《Journal of Semiconductors》 2025年第3期74-81,共8页
Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-po... Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices. 展开更多
关键词 quantum dot semiconducting matrix ligand exchange self-powered photodetectors
在线阅读 下载PDF
High peak power mini-array quantum cascade lasers operating in pulsed mode 被引量:1
16
作者 Yuhang Zhang Yupei Wang +6 位作者 Xiaoyue Luo Chenhao Qian Yang Cheng Wu Zhao Fangyuan Sun Jun Wang Zheng-Ming Sun 《Chinese Physics B》 2025年第1期339-342,共4页
Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order mo... Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order modes.A structure of mini-array is adopted to improve the heat dissipation capacity and beam quality of BA QCLs.The active region is etched to form a multi-emitter and the channels are filled with In P:Fe,which acts as a lateral heat dissipation channel to improve the lateral heat dissipation efficiency.A device withλ~4.8μm,a peak output power of 122 W at 1.2%duty cycle with a pulse of 1.5μs is obtained in room temperature,with far-field single-lobed distribution.This result allows BA QCLs to obtain high peak power at wider pump pulse widths and higher duty cycle conditions,promotes the application of the mid-infrared laser operating in pulsed mode in th e field of standoff photoacoustic chemical detection,space optical communication,and so on. 展开更多
关键词 quantum cascade laser mini-array thermal management
原文传递
Synthesis of p-type PbS quantum dot ink via inorganic ligand exchange in solution for high-efficiency and stable solar cells 被引量:1
17
作者 Napasuda Wichaiyo Yuyao Wei +9 位作者 Chao Ding Guozheng Shi Witoon Yindeesuk Liang Wang Huān Bì Jiaqi Liu Shuzi Hayase Yusheng Li Yongge Yang Qing Shen 《Journal of Semiconductors》 2025年第4期63-70,共8页
Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachm... Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices. 展开更多
关键词 quantum dot solar cells hole transport layer PBS p-type ink inorganic ligands
在线阅读 下载PDF
An Analysis about the Origin and Essence of Mass Based on Particle-Propagating Model and Wave Equations of Scalar Waves 被引量:1
18
作者 Jiang Jian-zhong Chen Xi-qi 《Journal of Environmental Science and Engineering(B)》 2025年第2期65-75,共11页
If the singularity of the cosmic Big Bang is taken as the origin of the reference coordinate system,the surrounding vacuum in the initial moments of it would exhibit radially-outward right-handed spiral motion at ligh... If the singularity of the cosmic Big Bang is taken as the origin of the reference coordinate system,the surrounding vacuum in the initial moments of it would exhibit radially-outward right-handed spiral motion at light speed.Based on this spatial motion hypothesis,we derive a unified field equation and a set of Maxwell’s equations for vacuum SWs(Scalar Waves)generating a huge spiral force field that drives the energy to spiral inwardly and distort,leading to the formation of mass.Furthermore,they also uncover that mass is fundamentally an ultimate expression of energy,manifesting as the result of spiral motion of space at light speed.And then,we indirectly validate the theory that coherent light waves’collision generate SWs and subsequently mass through the experiment verifying the Breit-Wheeler process.The establishment of our theory offers a new analytical tool for the exploration of mass origin,the cosmic Big Bang,unified field theories. 展开更多
关键词 QED(Quantum Electrodynamics) SW mass origin unified field theories
在线阅读 下载PDF
Effects of plasma screening on the^(1)P^(o)(n=3,n=4)resonance states of H-and He using the stabilization method
19
作者 仲子鑫 吕柄宽 +2 位作者 姜子实 KAR Sabyasachi HO Yew Kam 《黑龙江大学自然科学学报》 2025年第4期469-487,共19页
The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wav... The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters. 展开更多
关键词 quantum plasma Debye plasma P-wave resonance states correlated exponential wave functions stabilization method
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部