期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Enhanced minimum attribute reduction based on quantum-inspired shuffled frog leaping algorithm 被引量:3
1
作者 Weiping Ding Jiandong Wang +1 位作者 Zhijin Guan Quan Shi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期426-434,共9页
Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it i... Attribute reduction in the rough set theory is an important feature selection method, but finding a minimum attribute reduction has been proven to be a non-deterministic polynomial (NP)-hard problem. Therefore, it is necessary to investigate some fast and effective approximate algorithms. A novel and enhanced quantum-inspired shuffled frog leaping based minimum attribute reduction algorithm (QSFLAR) is proposed. Evolutionary frogs are represented by multi-state quantum bits, and both quantum rotation gate and quantum mutation operators are used to exploit the mechanisms of frog population diversity and convergence to the global optimum. The decomposed attribute subsets are co-evolved by the elitist frogs with a quantum-inspired shuffled frog leaping algorithm. The experimental results validate the better feasibility and effectiveness of QSFLAR, comparing with some representa- tive algorithms. Therefore, QSFLAR can be considered as a more competitive algorithm on the efficiency and accuracy for minimum attribute reduction. 展开更多
关键词 minimum attribute reduction quantum-inspired shuf- fled frog leaping algorithm multi-state quantum bit quantum rotation gate and quantum mutation elitist frog.
在线阅读 下载PDF
Quantum-inspired ant algorithm for knapsack problems 被引量:3
2
作者 Wang Honggang Ma Liang Zhang Huizhen Li Gaoya 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第5期1012-1016,共5页
The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack prob... The knapsack problem is a well-known combinatorial optimization problem which has been proved to be NP-hard. This paper proposes a new algorithm called quantum-inspired ant algorithm (QAA) to solve the knapsack problem. QAA takes the advantage of the principles in quantum computing, such as qubit, quantum gate, and quantum superposition of states, to get more probabilistic-based status with small colonies. By updating the pheromone in the ant algorithm and rotating the quantum gate, the algorithm can finally reach the optimal solution. The detailed steps to use QAA are presented, and by solving series of test cases of classical knapsack problems, the effectiveness and generality of the new algorithm are validated. 展开更多
关键词 knapsack problem quantum computing ant algorithm quantum-inspired ant algorithm.
在线阅读 下载PDF
Quantum-Inspired Neural Network with Sequence Input 被引量:1
3
作者 Ziyang Li Panchi Li 《Open Journal of Applied Sciences》 2015年第6期259-269,共11页
To enhance the approximation and generalization ability of artificial neural network (ANN) by employing the principles of quantum rotation gate and controlled-not gate, a quantum-inspired neuron with sequence input is... To enhance the approximation and generalization ability of artificial neural network (ANN) by employing the principles of quantum rotation gate and controlled-not gate, a quantum-inspired neuron with sequence input is proposed. In the proposed model, the discrete sequence input is represented by the qubits, which, as the control qubits of the controlled-not gate after being rotated by the quantum rotation gates, control the target qubit for reverse. The model output is described by the probability amplitude of state in the target qubit. Then a quantum-inspired neural network with sequence input (QNNSI) is designed by employing the sequence input-based quantum-inspired neurons to the hidden layer and the classical neurons to the output layer, and a learning algorithm is derived by employing the Levenberg-Marquardt algorithm. Simulation results of benchmark problem show that, under a certain condition, the QNNSI is obviously superior to the ANN. 展开更多
关键词 QUANTUM ROTATION GATE Multi-Qubits Controller-Not GATE quantum-inspired NEURON quantum-inspired Neural Network
暂未订购
NOVEL QUANTUM-INSPIRED GENETIC ALGORITHM BASED ON IMMUNITY
4
作者 LiYing ZhaoRongchun +1 位作者 ZhangYanning JiaoLicheng 《Journal of Electronics(China)》 2005年第4期371-378,共8页
A novel algorithm, the Immune Quantum-inspired Genetic Algorithm (IQGA), is proposed by introducing immune concepts and methods into Quantum-inspired Genetic Algorithm (QGA). With the condition of preserving QGA's... A novel algorithm, the Immune Quantum-inspired Genetic Algorithm (IQGA), is proposed by introducing immune concepts and methods into Quantum-inspired Genetic Algorithm (QGA). With the condition of preserving QGA's advantages, IQGA utilizes the characteristics and knowledge in the pending problems for restraining the repeated and ineffective operations during evolution, so as to improve the algorithm efficiency. The experimental results of the knapsack problem show that the performance of IQGA is superior to the Conventional Genetic Algorithm (CGA), the Immune Genetic Algorithm (IGA) and QGA. 展开更多
关键词 Genetic Algorithm(GA) quantum-inspired Genetic Algorithm(QGA) Immune operator Knapsack problem
在线阅读 下载PDF
Quantum-Inspired Neural Network with Quantum Weights and Real Weights
5
作者 Fuhua Shang 《Open Journal of Applied Sciences》 2015年第10期609-617,共9页
To enhance the approximation ability of neural networks, by introducing quantum rotation gates to the traditional BP networks, a novel quantum-inspired neural network model is proposed in this paper. In our model, the... To enhance the approximation ability of neural networks, by introducing quantum rotation gates to the traditional BP networks, a novel quantum-inspired neural network model is proposed in this paper. In our model, the hidden layer consists of quantum neurons. Each quantum neuron carries a group of quantum rotation gates which are used to update the quantum weights. Both input and output layer are composed of the traditional neurons. By employing the back propagation algorithm, the training algorithms are designed. Simulation-based experiments using two application examples of pattern recognition and function approximation, respectively, illustrate the availability of the proposed model. 展开更多
关键词 QUANTUM Computing QUANTUM ROTATION GATE quantum-inspired NEURON quantum-inspired NEURAL Network
在线阅读 下载PDF
Hamming-distance-based adaptive quantum-inspired evolutionary algorithm for network coding resources optimization 被引量:10
6
作者 Qu Zhijian Liu Xiaohong +2 位作者 Zhang Xianwei Xie Yinbao Li Caihong 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2015年第3期92-99,共8页
An adaptive quantum-inspired evolutionary algorithm based on Hamming distance (HD-QEA) was presented to optimize the network coding resources in multicast networks. In the HD-QEA, the diversity among individuals was... An adaptive quantum-inspired evolutionary algorithm based on Hamming distance (HD-QEA) was presented to optimize the network coding resources in multicast networks. In the HD-QEA, the diversity among individuals was taken into consideration, and a suitable rotation angle step (RAS) was assigned to each individual according to the Hamming distance. Performance comparisons were conducted among the HD-QEA, a basic quantum-inspired evolutionary algorithm (QEA) and an individual's fitness based adaptive QEA. A solid demonstration was provided that the proposed HD-QEA is better than the other two algorithms in terms of the convergence speed and the global optimization capability when they are employed to optimize the network coding resources in multicast networks. 展开更多
关键词 network coding quantum-inspired evolutionary algorithm Hamming distance multicast network
原文传递
Novel quantum-inspired firefly algorithm for optimal power quality monitor placement 被引量:1
7
作者 Ling Ai WONG Hussain SHAREEF Azah MOHAMED Ahmad Asrul IBRAHIM 《Frontiers in Energy》 SCIE CSCD 2014年第2期254-260,共7页
The application of a quantum-inspired firefly algorithm was introduced to obtain optimal power quality monitor placement in a power system. The conventional binary firefly algorithm was modified by using quantum princ... The application of a quantum-inspired firefly algorithm was introduced to obtain optimal power quality monitor placement in a power system. The conventional binary firefly algorithm was modified by using quantum principles to attain a faster convergence rate that can improve system performance and to avoid premature convergence. In the optimization process, a multi-objective function was used with the system observability constraint, which is determined via the topological monitor reach area concept. The multi-objective function comprises three functions: number of required monitors, monitor over-lapping index, and sag severity index. The effectiveness of the proposed method was verified by applying the algorithm to an IEEE 118-bus transmission system and by comparing the algorithm with others of its kind. 展开更多
关键词 quantum-inspired binary firefly algorithm topological monitor reach area power quality
原文传递
Quantum-Inspired Distributed Memetic Algorithm
8
作者 Guanghui Zhang Wenjing Ma +2 位作者 Keyi Xing Lining Xing Kesheng Wang 《Complex System Modeling and Simulation》 2022年第4期334-353,共20页
This paper proposed a novel distributed memetic evolutionary model,where four modules distributed exploration,intensified exploitation,knowledge transfer,and evolutionary restart are coevolved to maximize their streng... This paper proposed a novel distributed memetic evolutionary model,where four modules distributed exploration,intensified exploitation,knowledge transfer,and evolutionary restart are coevolved to maximize their strengths and achieve superior global optimality.Distributed exploration evolves three independent populations by heterogenous operators.Intensified exploitation evolves an external elite archive in parallel with exploration to balance global and local searches.Knowledge transfer is based on a point-ring communication topology to share successful experiences among distinct search agents.Evolutionary restart adopts an adaptive perturbation strategy to control search diversity reasonably.Quantum computation is a newly emerging technique,which has powerful computing power and parallelized ability.Therefore,this paper further fuses quantum mechanisms into the proposed evolutionary model to build a new evolutionary algorithm,referred to as quantum-inspired distributed memetic algorithm(QDMA).In QDMA,individuals are represented by the quantum characteristics and evolved by the quantum-inspired evolutionary optimizers in the quantum hyperspace.The QDMA integrates the superiorities of distributed,memetic,and quantum evolution.Computational experiments are carried out to evaluate the superior performance of QDMA.The results demonstrate the effectiveness of special designs and show that QDMA has greater superiority compared to the compared state-of-the-art algorithms based on Wilcoxon’s rank-sum test.The superiority is attributed not only to good cooperative coevolution of distributed memetic evolutionary model,but also to superior designs of each special component. 展开更多
关键词 distributed evolutionary algorithm memetic algorithm quantum-inspired evolutionary algorithm quantum distributed memetic algorithm
原文传递
Energy-Efficient Joint Content Caching and Small Base Station Activation Mechanism Design in Heterogeneous Cellular Networks 被引量:6
9
作者 Renchao Xie Zishu Li +1 位作者 Tao Huang Yunjie Liu 《China Communications》 SCIE CSCD 2017年第10期70-83,共14页
Heterogeneous cellular networks(HCNs), by introducing caching capability, has been considered as a promising technique in 5 G era, which can bring contents closer to users to reduce the transmission delay, save scarce... Heterogeneous cellular networks(HCNs), by introducing caching capability, has been considered as a promising technique in 5 G era, which can bring contents closer to users to reduce the transmission delay, save scarce bandwidth resource. Although many works have been done for caching in HCNs, from an energy perspective, there still exists much space to develop a more energy-efficient system when considering the fact that the majority of base stations are under-utilized in the most of the time. Therefore, in this paper, by taking the activation mechanism for the base stations into account, we study a joint caching and activation mechanism design to further improve the energy efficiency, then we formulate the optimization problem as an Integer Linear Programming problem(ILP) to maximize the system energy saving. Due to the enormous computation complexity for finding the optimal solution, we introduced a Quantum-inspired Evolutionary Algorithm(QEA) to iteratively provide the global best solution. Numerical results show that our proposed algorithm presents an excellent performance, which is far better than the strategy of only considering caching without deactivation mechanism in the actual, normal situation. We also provide performance comparison amongour QEA, random sleeping algorithm and greedy algorithm, numerical results illustrate our introduced QEA performs best in accuracy and global optimality. 展开更多
关键词 caching base station activation energy saving quantum-inspired evolutionary algorithm
在线阅读 下载PDF
PHISHING WEB IMAGE SEGMENTATION BASED ON IMPROVING SPECTRAL CLUSTERING 被引量:1
10
作者 Li Yuancheng Zhao Liujun Jiao Runhai 《Journal of Electronics(China)》 2011年第1期101-107,共7页
This paper proposes a novel phishing web image segmentation algorithm which based on improving spectral clustering.Firstly,we construct a set of points which are composed of spatial location pixels and gray levels fro... This paper proposes a novel phishing web image segmentation algorithm which based on improving spectral clustering.Firstly,we construct a set of points which are composed of spatial location pixels and gray levels from a given image.Secondly,the data is clustered in spectral space of the similar matrix of the set points,in order to avoid the drawbacks of K-means algorithm in the conventional spectral clustering method that is sensitive to initial clustering centroids and convergence to local optimal solution,we introduce the clone operator,Cauthy mutation to enlarge the scale of clustering centers,quantum-inspired evolutionary algorithm to find the global optimal clustering centroids.Compared with phishing web image segmentation based on K-means,experimental results show that the segmentation performance of our method gains much improvement.Moreover,our method can convergence to global optimal solution and is better in accuracy of phishing web segmentation. 展开更多
关键词 Spectral clustering algorithm CLONAL MUTATION quantum-inspired Evolutionary Algorithm(QEA) Phishing web image segmentation
在线阅读 下载PDF
A Novel Quantum - inspired Multi - Objective Evolutionary Algorithm Based on Cloud Theory
11
作者 Bo Xu~1 Wang Cheng~2 Jian-Ping Yu~3 Yong Wang~4 (1.Department of Computer Science and Technology,Guangdong University of Petrochemical Technology,Maoming,Guangdong,525000) (2.Wells Fargo Bank,USA) (3.College of Mathematics and Computer Science,Hunan Normal University,Changsha,410081) (4.College of Electrical and Information Engineering,Hunan University,Changsha,410082) 《自动化博览》 2011年第S2期145-150,共6页
In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the ... In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the non-dominated set as well as the diversity of population in multi-objective problems,in this paper,a Novel Cloud -based quantum -inspired multi-objective evolutionary Algorithm(CQMEA) is proposed.CQMEA is proposed by employing the concept and principles of Cloud theory.The algorithm utilizes the random orientation and stability of the cloud model,uses a self-adaptive mechanism with cloud model of Quantum gates updating strategy to implement global search efficient.By using the self-adaptive mechanism and the better solution which is determined by the membership function uncertainly,Compared with several well-known algorithms such as NSGA-Ⅱ,QMEA.Experimental results show that(CQMEA) is more effective than QMEA and NSGA -Ⅱ. 展开更多
关键词 MULTI-OBJECTIVE Optimization PROBLEM quantum-inspired MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM CLOUD Model EVOLUTIONARY ALGORITHM
在线阅读 下载PDF
A QUANTUM MULTI-AGENT BASED NEURAL NETWORK MODEL FOR FAILURE PREDICTION 被引量:5
12
作者 Wei Wu Min Liu +1 位作者 Qing Liu Weiming Shen 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2016年第2期210-228,共19页
An effective prognostic program is crucial to the predictive maintenance of complex equipment since it can improve productivity, prolong equipment life, and enhance system safety. This paper proposes a novel technique... An effective prognostic program is crucial to the predictive maintenance of complex equipment since it can improve productivity, prolong equipment life, and enhance system safety. This paper proposes a novel technique for accurate failure prognosis based on back propagation neural network and quantum multi-agent algorithm. Inspired by the extensive research of quantum computing theory and multi-agent systems, the technique employs a quantum multi-agent strategy, with the main characteristics of quantum agent representation and several operations including fitness evaluation, cooperation, crossover and mutation, for parameters optimization of neural network to avoid the deficiencies such as slow convergence and liability of getting stuck to local minima. To validate the feasibility of the proposed approach, several numerical approximation experiments were firstly designed, after which real vibrational data of bearings from the Laboratory of Cincinnati University were analyzed and used to assess the health condition for a given future point. The results were rather encouraging and indicated that the presented forecasting method has the potential to be utilized as an estimation tool for failure prediction in industrial machinery. 展开更多
关键词 Failure prediction complex equipment quantum-inspired multi-agent algorithm back propagation neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部