The article consists of two parts.Part I shows the possibility of quantum/soft computing optimizers of knowledge bases(QSCOptKB™)as the toolkit of quantum deep machine learning technology implementation in the solutio...The article consists of two parts.Part I shows the possibility of quantum/soft computing optimizers of knowledge bases(QSCOptKB™)as the toolkit of quantum deep machine learning technology implementation in the solution’s search of intelligent cognitive control tasks applied the cognitive helmet as neurointerface.In particular case,the aim of this part is to demonstrate the possibility of classifying the mental states of a human being operator in on line with knowledge extraction from electroencephalograms based on SCOptKB™and QCOptKB™sophisticated toolkit.Application of soft computing technologies to identify objective indicators of the psychophysiological state of an examined person described.The role and necessity of applying intelligent information technologies development based on computational intelligence toolkits in the task of objective estimation of a general psychophysical state of a human being operator shown.Developed information technology examined with special(difficult in diagnostic practice)examples emotion state estimation of autism children(ASD)and dementia and background of the knowledge bases design for intelligent robot of service use is it.Application of cognitive intelligent control in navigation of autonomous robot for avoidance of obstacles demonstrated.展开更多
Quantum error correction is essential for realizing fault-tolerant quantum computing,where both the efficiency and accuracy of the decoding algorithms play critical roles.In this work,we introduce the implementation o...Quantum error correction is essential for realizing fault-tolerant quantum computing,where both the efficiency and accuracy of the decoding algorithms play critical roles.In this work,we introduce the implementation of the PLANAR algorithm,a software framework designed for fast and exact decoding of quantum codes with a planar structure.The algorithm first converts the optimal decoding of quantum codes into a partition function computation problem of an Ising spin glass model.Then it utilizes the exact Kac–Ward formula to solve it.In this way,PLANAR offers the exact maximum likelihood decoding in polynomial complexity for quantum codes with a planar structure,including the surface code with independent code-capacity noise and the quantum repetition code with circuit-level noise.Unlike traditional minimumweight decoders such as minimum-weight perfect matching(MWPM),PLANAR achieves theoretically optimal performance while maintaining polynomial-time efficiency.In addition,to demonstrate its capabilities,we exemplify the implementation using the rotated surface code,a commonly used quantum error correction code with a planar structure,and show that PLANAR achieves a threshold of approximately p_(uc)≈0.109 under the depolarizing error model,with a time complexity scaling of O(N^(0.69)),where N is the number of spins in the Ising model.展开更多
Quantum software development utilizes quantum phenomena such as superposition and entanglement to address problems that are challenging for classical systems.However,it must also adhere to critical quantum constraints...Quantum software development utilizes quantum phenomena such as superposition and entanglement to address problems that are challenging for classical systems.However,it must also adhere to critical quantum constraints,notably the no-cloning theorem,which prohibits the exact duplication of unknown quantum states and has profound implications for cryptography,secure communication,and error correction.While existing quantum circuit representations implicitly honor such constraints,they lack formal mechanisms for early-stage verification in software design.Addressing this constraint at the design phase is essential to ensure the correctness and reliability of quantum software.This paper presents a formal metamodeling framework using UML-style notation and and Object Constraint Language(OCL)to systematically capture and enforce the no-cloning theorem within quantum software models.The proposed metamodel formalizes key quantum concepts—such as entanglement and teleportation—and encodes enforceable invariants that reflect core quantum mechanical laws.The framework’s effectiveness is validated by analyzing two critical edge cases—conditional copying with CNOT gates and quantum teleportation—through instance model evaluations.These cases demonstrate that the metamodel can capture nuanced scenarios that are often mistaken as violations of the no-cloning theorem but are proven compliant under formal analysis.Thus,these serve as constructive validations that demonstrate the metamodel’s expressiveness and correctness in representing operations that may appear to challenge the no-cloning theorem but,upon rigorous analysis,are shown to comply with it.The approach supports early detection of conceptual design errors,promoting correctness prior to implementation.The framework’s extensibility is also demonstrated by modeling projective measurement,further reinforcing its applicability to broader quantum software engineering tasks.By integrating the rigor of metamodeling with fundamental quantum mechanical principles,this work provides a structured,model-driven approach that enables traditional software engineers to address quantum computing challenges.It offers practical insights into embedding quantum correctness at the modeling level and advances the development of reliable,error-resilient quantum software systems.展开更多
近年来,综合能源系统作为一种以多种能源形态和设备相互交互的能源系统方案得到了广泛应用和研究.然而,在面对动态复杂的多能源系统时,传统的优化调度方法往往无法满足其实时性和精准度需求.因此,本文设计了一种软深度确定性策略梯度(So...近年来,综合能源系统作为一种以多种能源形态和设备相互交互的能源系统方案得到了广泛应用和研究.然而,在面对动态复杂的多能源系统时,传统的优化调度方法往往无法满足其实时性和精准度需求.因此,本文设计了一种软深度确定性策略梯度(Soft Deep Deterministic Policy Gradient,Soft-DDPG)算法驱动的综合能源系统优化调度方法,以最小化调度周期内系统总运行成本为目标,建立设备运行综合能效评估模型,再采用Soft-DDPG算法对每个能源设备的能效调度动作进行优化控制.Soft-DDPG算法将softmax算子引入到动作值函数的计算中,有效降低了Q值高估问题.与此同时,该算法在动作选择策略中加入了随机噪声,提高了算法的学习效率.实验结果显示,本文所提出的方法解决了综合能源系统能效调度实时性差、精准度低的瓶颈问题,实现了系统的高效灵活调度,降低了系统的总运行成本.展开更多
降维对于数据的可视化和预处理具有重要意义,主成分分析作为最常用的无监督降维算法之一,在实际应用中面临着对噪声和离群点敏感的问题。为了解决这个问题,研究者们提出了多种鲁棒主成分分析算法,通过减小整体样本的重构误差来减小离群...降维对于数据的可视化和预处理具有重要意义,主成分分析作为最常用的无监督降维算法之一,在实际应用中面临着对噪声和离群点敏感的问题。为了解决这个问题,研究者们提出了多种鲁棒主成分分析算法,通过减小整体样本的重构误差来减小离群点的影响。然而,这些算法忽略了数据的固有局部结构,导致数据的本质结构信息丢失,从而影响了对噪声和离群点的准确辨识和移除,进而影响了后续算法的性能。因此,该文提出了基于Soft均值滤波的鲁棒主成分分析(Robust Principal Component Analysis Based on Soft Mean Filtering,RPCA-SMF)算法。RPCA-SMF采用Soft均值滤波的思想,通过两步走的形式,不仅在模型学习前对噪声处理,同时在模型学习后也引入了噪声处理机制。具体而言,RPCA-SMF算法首先引入了均值滤波的相关思想,通过对比样本与其局部近邻这两者和局部均值的偏差对样本进行Soft加权,从而对噪声进行判定。随后,通过第一步获取的关于噪声的“判别知识”处理噪声信息。由于均值滤波能有效保留数据的整体轮廓信息,因此对于被识别为噪声的样本,RPCA-SMF算法强调保留其低频整体轮廓信息,而非高频的噪声信息。这样能够有效地保留数据中的有用信息,提高对数据整体结构特征的保留能力,使得算法具有较强的鲁棒性和较好的泛化性。展开更多
As quantum computing transitions from a theoretical domain to a practical technology, many aspects of established practice in software engineering are being faced with new challenges. Quantum Software Engineering has ...As quantum computing transitions from a theoretical domain to a practical technology, many aspects of established practice in software engineering are being faced with new challenges. Quantum Software Engineering has been developed to address the peculiar needs that arise with quantum systems’ dependable, scalable, and fault-tolerant software development. The present paper critically reviews how traditional software engineering methodologies can be reshaped to fit into the quantum field. This also entails providing some critical contributions: frameworks to integrate classical and quantum systems, new error mitigation techniques, and the development of quantum-specific testing and debugging tools. In this respect, best practices have been recommended to ensure that future quantum software can harness the evolving capabilities of quantum hardware with continued performance, reliability, and scalability. The work is supposed to act as a foundational guide for the researcher and developer as quantum computing approaches widespread scientific and industrial adoption.展开更多
Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yiel...Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs.展开更多
Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum...Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.展开更多
The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investiga...The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices.展开更多
针对人类示教轨迹样本存在的时间和空间不对齐导致难以提取运动特征的问题,首先提出了基于典型时间规整(Canonical Time Warping,CTW)算法用于多条轨迹对齐的方法,并将其引入到软-动态时间规整(soft-dynamic time warping,soft-DTW)算...针对人类示教轨迹样本存在的时间和空间不对齐导致难以提取运动特征的问题,首先提出了基于典型时间规整(Canonical Time Warping,CTW)算法用于多条轨迹对齐的方法,并将其引入到软-动态时间规整(soft-dynamic time warping,soft-DTW)算法中以提取轨迹模板,其次在CTW算法中引入了一个新的变量,以提升CTW算法在对齐多条轨迹方面的能力;最后,在实验中利用多种轨迹验证了所提出的轨迹模板提取方法,实验结果表明所提出的方法可以从人类示教轨迹中快速地提取共有的运动特征,并且对示教轨迹在时间和空间上的差异具有较好的鲁棒性.展开更多
Biomass-derived hard carbon is becoming promising anodes for potassium-ion batteries(PIBs)thanks to their resource abundance.Yet,it is a big challenge to improve the charge carrier kinetics of the disordered carbon la...Biomass-derived hard carbon is becoming promising anodes for potassium-ion batteries(PIBs)thanks to their resource abundance.Yet,it is a big challenge to improve the charge carrier kinetics of the disordered carbon lattice in hard carbon.Herein,confined pitch-based soft carbon in pollen-derived hard carbon(PSC/PHC)is synthesized by vapor deposition strategy as anodes for PIBs.The ordered pitch-based soft carbon compensates for the short-range electron conduction in hard carbon to enhance the charge transfer kinetics,and the externally disordered pollen-derived hard carbon alleviates the volume change of soft carbon during cycling.Benefiting from the synergistic effect of soft and hard carbon,as well as the reinforced structure of order-in-disordered carbon,the PSC/PHC obtained with deposition time of 0.5 h(PSC/PHC-0.5)displays an excellent rate capability(148.7 mAh g^(-1)at 10 A g^(-1))and superb cycling stability(70%retention over 2000 cycles at 1 A g^(-1)).This work offers a unique insight in tuning the microcrystalline structure of soft-hard carbon anode for advanced PIBs.展开更多
Using the new soft X-ray data from the Macao Science Satellite-1,we studied a solar flare that occurred on 22 June 2023.We found that the centroids of the Ca(around 3.9 keV)and Fe(around 6.7 keV)line features exhibit ...Using the new soft X-ray data from the Macao Science Satellite-1,we studied a solar flare that occurred on 22 June 2023.We found that the centroids of the Ca(around 3.9 keV)and Fe(around 6.7 keV)line features exhibit a rapid shift toward higher energy channels during the flare's rising phase,followed by a gradual decrease during the decay phase.Through precise energy calibration,the centroids are determined with high accuracy.Temperature and velocity are then self-consistently derived by comparing the centroids with those calculated from the synthesized line features using the latest CHIANTI atomic database(ver.10.1).The calculated maximum velocity reaches up to 710±60 km s-1,which significantly exceeds the previously reported values.Our results suggest that the entire shift of soft X-ray lines may occur during the process of chromospheric evaporation.展开更多
Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order mo...Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order modes.A structure of mini-array is adopted to improve the heat dissipation capacity and beam quality of BA QCLs.The active region is etched to form a multi-emitter and the channels are filled with In P:Fe,which acts as a lateral heat dissipation channel to improve the lateral heat dissipation efficiency.A device withλ~4.8μm,a peak output power of 122 W at 1.2%duty cycle with a pulse of 1.5μs is obtained in room temperature,with far-field single-lobed distribution.This result allows BA QCLs to obtain high peak power at wider pump pulse widths and higher duty cycle conditions,promotes the application of the mid-infrared laser operating in pulsed mode in th e field of standoff photoacoustic chemical detection,space optical communication,and so on.展开更多
Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-po...Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices.展开更多
With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ...With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers.展开更多
Surrounding rock deterioration and large deformation have always been a significant difficulty in designing and constructing tunnels in soft rock.The key lies in real-time perception and quantitative assessment of the...Surrounding rock deterioration and large deformation have always been a significant difficulty in designing and constructing tunnels in soft rock.The key lies in real-time perception and quantitative assessment of the damaged area around the tunnel.An in situ microseismic(MS)monitoring system is established in the plateau soft tock tunnel.This technique facilitates spatiotemporal monitoring of the rock mass's fracturing expansion and squeezing deformation,which agree well with field convergence deformation results.The formation mechanisms of progressive failure evolution of soft rock tunnels were discussed and analyzed with MS data and numerical results.The results demonstrate that:(1)Localized stress concentration and layered rock result in significant asymmetry in micro-fractures propagation in the tunnel radial section.As excavation continues,the fracture extension area extends into the deep surrounding rockmass on the east side affected by the weak bedding;(2)Tunnel excavation and long-term deformation can induce tensile shear action on the rock mass,vertical tension fractures(account for 45%)exist in deep rockmass,which play a crucial role in controlling the macroscopic failure of surrounding rock;and(3)Based on the radiated MS energy,a three-dimensional model was created to visualize the damage zone of the tunnel surrounding rock.The model depicted varying degrees of damage,and three high damage zones were identified.Generally,the depth of high damage zone ranged from 4 m to 12 m.This study may be a valuable reference for the warning and controlling of large deformations in similar projects.展开更多
ı-quantum groups,arising from quantum symmetric pairs,are coideal subalgebras of quantum groups.ı-quantum groups are a vast generalization of quantum groups,as quantum groups can be viewed asıquantum groups of diagona...ı-quantum groups,arising from quantum symmetric pairs,are coideal subalgebras of quantum groups.ı-quantum groups are a vast generalization of quantum groups,as quantum groups can be viewed asıquantum groups of diagonal type.Recently,the braid group symmetries and Drinfeld new presentations of quantum groups have been generalized to affineı-quantum groups.In this paper,we construct PBW type bases for splitı-quantum groups of type ADE,based on their braid group symmetries and Drinfeld new presentations.This can be viewed as anı-analogue of the PBW-basis for affine quantum groups,and it generalizes the PBW-basis ofı-quantum groups of finite type.展开更多
The no-cloning theorem has sparked considerable interest in achieving high-fidelity approximate quantum cloning.Most of the previous studies mainly focused on the cloning of single particle states,and cloning schemes ...The no-cloning theorem has sparked considerable interest in achieving high-fidelity approximate quantum cloning.Most of the previous studies mainly focused on the cloning of single particle states,and cloning schemes used there are incapable of cloning quantum entangled states in multipartite systems.Few schemes were proposed for cloning multiparticle states,which consume more entanglement resources with loss of qubits,and the fidelity of the cloned state is relatively low.In this paper,cloning schemes for bipartite and tripartite entangled states based on photonic quantum walk and entanglement swapping are proposed.The results show that according to the proposed schemes,two high-fidelity(up to 0.75)cloned states can be obtained with less quantum resource consumption.Because of the simple cloning steps,few quantum resources and high fidelity,these schemes are both efficient and feasible.Moreover,this cloning machine eliminates the need for tracing out cloning machine,thereby minimizing resource waste.展开更多
Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachm...Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.展开更多
文摘The article consists of two parts.Part I shows the possibility of quantum/soft computing optimizers of knowledge bases(QSCOptKB™)as the toolkit of quantum deep machine learning technology implementation in the solution’s search of intelligent cognitive control tasks applied the cognitive helmet as neurointerface.In particular case,the aim of this part is to demonstrate the possibility of classifying the mental states of a human being operator in on line with knowledge extraction from electroencephalograms based on SCOptKB™and QCOptKB™sophisticated toolkit.Application of soft computing technologies to identify objective indicators of the psychophysiological state of an examined person described.The role and necessity of applying intelligent information technologies development based on computational intelligence toolkits in the task of objective estimation of a general psychophysical state of a human being operator shown.Developed information technology examined with special(difficult in diagnostic practice)examples emotion state estimation of autism children(ASD)and dementia and background of the knowledge bases design for intelligent robot of service use is it.Application of cognitive intelligent control in navigation of autonomous robot for avoidance of obstacles demonstrated.
基金supported by the National Natural Science Foundation of China(Grant Nos.12325501,12047503,and 12247104)the Chinese Academy of Sciences(Grant No.ZDRW-XX-2022-3-02)P.Z.is partially supported by the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301900).
文摘Quantum error correction is essential for realizing fault-tolerant quantum computing,where both the efficiency and accuracy of the decoding algorithms play critical roles.In this work,we introduce the implementation of the PLANAR algorithm,a software framework designed for fast and exact decoding of quantum codes with a planar structure.The algorithm first converts the optimal decoding of quantum codes into a partition function computation problem of an Ising spin glass model.Then it utilizes the exact Kac–Ward formula to solve it.In this way,PLANAR offers the exact maximum likelihood decoding in polynomial complexity for quantum codes with a planar structure,including the surface code with independent code-capacity noise and the quantum repetition code with circuit-level noise.Unlike traditional minimumweight decoders such as minimum-weight perfect matching(MWPM),PLANAR achieves theoretically optimal performance while maintaining polynomial-time efficiency.In addition,to demonstrate its capabilities,we exemplify the implementation using the rotated surface code,a commonly used quantum error correction code with a planar structure,and show that PLANAR achieves a threshold of approximately p_(uc)≈0.109 under the depolarizing error model,with a time complexity scaling of O(N^(0.69)),where N is the number of spins in the Ising model.
文摘Quantum software development utilizes quantum phenomena such as superposition and entanglement to address problems that are challenging for classical systems.However,it must also adhere to critical quantum constraints,notably the no-cloning theorem,which prohibits the exact duplication of unknown quantum states and has profound implications for cryptography,secure communication,and error correction.While existing quantum circuit representations implicitly honor such constraints,they lack formal mechanisms for early-stage verification in software design.Addressing this constraint at the design phase is essential to ensure the correctness and reliability of quantum software.This paper presents a formal metamodeling framework using UML-style notation and and Object Constraint Language(OCL)to systematically capture and enforce the no-cloning theorem within quantum software models.The proposed metamodel formalizes key quantum concepts—such as entanglement and teleportation—and encodes enforceable invariants that reflect core quantum mechanical laws.The framework’s effectiveness is validated by analyzing two critical edge cases—conditional copying with CNOT gates and quantum teleportation—through instance model evaluations.These cases demonstrate that the metamodel can capture nuanced scenarios that are often mistaken as violations of the no-cloning theorem but are proven compliant under formal analysis.Thus,these serve as constructive validations that demonstrate the metamodel’s expressiveness and correctness in representing operations that may appear to challenge the no-cloning theorem but,upon rigorous analysis,are shown to comply with it.The approach supports early detection of conceptual design errors,promoting correctness prior to implementation.The framework’s extensibility is also demonstrated by modeling projective measurement,further reinforcing its applicability to broader quantum software engineering tasks.By integrating the rigor of metamodeling with fundamental quantum mechanical principles,this work provides a structured,model-driven approach that enables traditional software engineers to address quantum computing challenges.It offers practical insights into embedding quantum correctness at the modeling level and advances the development of reliable,error-resilient quantum software systems.
文摘近年来,综合能源系统作为一种以多种能源形态和设备相互交互的能源系统方案得到了广泛应用和研究.然而,在面对动态复杂的多能源系统时,传统的优化调度方法往往无法满足其实时性和精准度需求.因此,本文设计了一种软深度确定性策略梯度(Soft Deep Deterministic Policy Gradient,Soft-DDPG)算法驱动的综合能源系统优化调度方法,以最小化调度周期内系统总运行成本为目标,建立设备运行综合能效评估模型,再采用Soft-DDPG算法对每个能源设备的能效调度动作进行优化控制.Soft-DDPG算法将softmax算子引入到动作值函数的计算中,有效降低了Q值高估问题.与此同时,该算法在动作选择策略中加入了随机噪声,提高了算法的学习效率.实验结果显示,本文所提出的方法解决了综合能源系统能效调度实时性差、精准度低的瓶颈问题,实现了系统的高效灵活调度,降低了系统的总运行成本.
文摘降维对于数据的可视化和预处理具有重要意义,主成分分析作为最常用的无监督降维算法之一,在实际应用中面临着对噪声和离群点敏感的问题。为了解决这个问题,研究者们提出了多种鲁棒主成分分析算法,通过减小整体样本的重构误差来减小离群点的影响。然而,这些算法忽略了数据的固有局部结构,导致数据的本质结构信息丢失,从而影响了对噪声和离群点的准确辨识和移除,进而影响了后续算法的性能。因此,该文提出了基于Soft均值滤波的鲁棒主成分分析(Robust Principal Component Analysis Based on Soft Mean Filtering,RPCA-SMF)算法。RPCA-SMF采用Soft均值滤波的思想,通过两步走的形式,不仅在模型学习前对噪声处理,同时在模型学习后也引入了噪声处理机制。具体而言,RPCA-SMF算法首先引入了均值滤波的相关思想,通过对比样本与其局部近邻这两者和局部均值的偏差对样本进行Soft加权,从而对噪声进行判定。随后,通过第一步获取的关于噪声的“判别知识”处理噪声信息。由于均值滤波能有效保留数据的整体轮廓信息,因此对于被识别为噪声的样本,RPCA-SMF算法强调保留其低频整体轮廓信息,而非高频的噪声信息。这样能够有效地保留数据中的有用信息,提高对数据整体结构特征的保留能力,使得算法具有较强的鲁棒性和较好的泛化性。
文摘As quantum computing transitions from a theoretical domain to a practical technology, many aspects of established practice in software engineering are being faced with new challenges. Quantum Software Engineering has been developed to address the peculiar needs that arise with quantum systems’ dependable, scalable, and fault-tolerant software development. The present paper critically reviews how traditional software engineering methodologies can be reshaped to fit into the quantum field. This also entails providing some critical contributions: frameworks to integrate classical and quantum systems, new error mitigation techniques, and the development of quantum-specific testing and debugging tools. In this respect, best practices have been recommended to ensure that future quantum software can harness the evolving capabilities of quantum hardware with continued performance, reliability, and scalability. The work is supposed to act as a foundational guide for the researcher and developer as quantum computing approaches widespread scientific and industrial adoption.
文摘Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs.
基金Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No. ZKSYS202204)the Talent Introduction Fund of Anhui University of Science and Technology (Grant No. 2021yjrc34)the Scientific Research Fund of Anhui Provincial Education Department (Grant No. KJ2020A0301)。
文摘Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.
基金support from the National Key Research and Development Program of China(2024YFA1207700)National Natural Science Foundation of China(52072141,52102170).
文摘The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices.
文摘针对人类示教轨迹样本存在的时间和空间不对齐导致难以提取运动特征的问题,首先提出了基于典型时间规整(Canonical Time Warping,CTW)算法用于多条轨迹对齐的方法,并将其引入到软-动态时间规整(soft-dynamic time warping,soft-DTW)算法中以提取轨迹模板,其次在CTW算法中引入了一个新的变量,以提升CTW算法在对齐多条轨迹方面的能力;最后,在实验中利用多种轨迹验证了所提出的轨迹模板提取方法,实验结果表明所提出的方法可以从人类示教轨迹中快速地提取共有的运动特征,并且对示教轨迹在时间和空间上的差异具有较好的鲁棒性.
基金partly supported by the National Natural Science Foundation of China(52072002,52372037,and 22108003)the Postdoctoral Fellowship Program of CPSF(GZC20230015)+2 种基金the Outstanding Scientific Research and Innovation Team Program of Higher Education Institutions of Anhui Province(2023AH010015)the Excellent Young Talents Fund Program of Higher Education Institutions of Anhui Province(2023AH030026)financial support from the Anhui International Research Center of Energy Materials Green Manufacturing and Biotechnology。
文摘Biomass-derived hard carbon is becoming promising anodes for potassium-ion batteries(PIBs)thanks to their resource abundance.Yet,it is a big challenge to improve the charge carrier kinetics of the disordered carbon lattice in hard carbon.Herein,confined pitch-based soft carbon in pollen-derived hard carbon(PSC/PHC)is synthesized by vapor deposition strategy as anodes for PIBs.The ordered pitch-based soft carbon compensates for the short-range electron conduction in hard carbon to enhance the charge transfer kinetics,and the externally disordered pollen-derived hard carbon alleviates the volume change of soft carbon during cycling.Benefiting from the synergistic effect of soft and hard carbon,as well as the reinforced structure of order-in-disordered carbon,the PSC/PHC obtained with deposition time of 0.5 h(PSC/PHC-0.5)displays an excellent rate capability(148.7 mAh g^(-1)at 10 A g^(-1))and superb cycling stability(70%retention over 2000 cycles at 1 A g^(-1)).This work offers a unique insight in tuning the microcrystalline structure of soft-hard carbon anode for advanced PIBs.
文摘Using the new soft X-ray data from the Macao Science Satellite-1,we studied a solar flare that occurred on 22 June 2023.We found that the centroids of the Ca(around 3.9 keV)and Fe(around 6.7 keV)line features exhibit a rapid shift toward higher energy channels during the flare's rising phase,followed by a gradual decrease during the decay phase.Through precise energy calibration,the centroids are determined with high accuracy.Temperature and velocity are then self-consistently derived by comparing the centroids with those calculated from the synthesized line features using the latest CHIANTI atomic database(ver.10.1).The calculated maximum velocity reaches up to 710±60 km s-1,which significantly exceeds the previously reported values.Our results suggest that the entire shift of soft X-ray lines may occur during the process of chromospheric evaporation.
文摘Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order modes.A structure of mini-array is adopted to improve the heat dissipation capacity and beam quality of BA QCLs.The active region is etched to form a multi-emitter and the channels are filled with In P:Fe,which acts as a lateral heat dissipation channel to improve the lateral heat dissipation efficiency.A device withλ~4.8μm,a peak output power of 122 W at 1.2%duty cycle with a pulse of 1.5μs is obtained in room temperature,with far-field single-lobed distribution.This result allows BA QCLs to obtain high peak power at wider pump pulse widths and higher duty cycle conditions,promotes the application of the mid-infrared laser operating in pulsed mode in th e field of standoff photoacoustic chemical detection,space optical communication,and so on.
基金supported by the National Natural Science Foundation of China (No. 62204079)the Science and Technology Development Project of Henan Province (Nos.202300410048, 202300410057)+2 种基金the China Postdoctoral Science Foundation (No. 2022M711037)the Intelligence Introduction Plan of Henan Province in 2021 (No. CXJD2021008)Henan University Fund。
文摘Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices.
基金financial support from the Doctoral Foundation of Henan University of Engineering(No.D2022025)National Natural Science Foundation of China(No.U2004162)+1 种基金National Natural Science Foundation of China(No.52302138)Key Project for Science and Technology Development of Henan Province(No.232102320221)。
文摘With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers.
基金the funding support from the National Natural Science Foundation of China(Grant Nos.U23A2060,42177143 and 42277461).
文摘Surrounding rock deterioration and large deformation have always been a significant difficulty in designing and constructing tunnels in soft rock.The key lies in real-time perception and quantitative assessment of the damaged area around the tunnel.An in situ microseismic(MS)monitoring system is established in the plateau soft tock tunnel.This technique facilitates spatiotemporal monitoring of the rock mass's fracturing expansion and squeezing deformation,which agree well with field convergence deformation results.The formation mechanisms of progressive failure evolution of soft rock tunnels were discussed and analyzed with MS data and numerical results.The results demonstrate that:(1)Localized stress concentration and layered rock result in significant asymmetry in micro-fractures propagation in the tunnel radial section.As excavation continues,the fracture extension area extends into the deep surrounding rockmass on the east side affected by the weak bedding;(2)Tunnel excavation and long-term deformation can induce tensile shear action on the rock mass,vertical tension fractures(account for 45%)exist in deep rockmass,which play a crucial role in controlling the macroscopic failure of surrounding rock;and(3)Based on the radiated MS energy,a three-dimensional model was created to visualize the damage zone of the tunnel surrounding rock.The model depicted varying degrees of damage,and three high damage zones were identified.Generally,the depth of high damage zone ranged from 4 m to 12 m.This study may be a valuable reference for the warning and controlling of large deformations in similar projects.
文摘ı-quantum groups,arising from quantum symmetric pairs,are coideal subalgebras of quantum groups.ı-quantum groups are a vast generalization of quantum groups,as quantum groups can be viewed asıquantum groups of diagonal type.Recently,the braid group symmetries and Drinfeld new presentations of quantum groups have been generalized to affineı-quantum groups.In this paper,we construct PBW type bases for splitı-quantum groups of type ADE,based on their braid group symmetries and Drinfeld new presentations.This can be viewed as anı-analogue of the PBW-basis for affine quantum groups,and it generalizes the PBW-basis ofı-quantum groups of finite type.
文摘The no-cloning theorem has sparked considerable interest in achieving high-fidelity approximate quantum cloning.Most of the previous studies mainly focused on the cloning of single particle states,and cloning schemes used there are incapable of cloning quantum entangled states in multipartite systems.Few schemes were proposed for cloning multiparticle states,which consume more entanglement resources with loss of qubits,and the fidelity of the cloned state is relatively low.In this paper,cloning schemes for bipartite and tripartite entangled states based on photonic quantum walk and entanglement swapping are proposed.The results show that according to the proposed schemes,two high-fidelity(up to 0.75)cloned states can be obtained with less quantum resource consumption.Because of the simple cloning steps,few quantum resources and high fidelity,these schemes are both efficient and feasible.Moreover,this cloning machine eliminates the need for tracing out cloning machine,thereby minimizing resource waste.
基金supported by MEXT KAKENHI Grant(24K01295,26286013).
文摘Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.