Simulating U(1) quantum gauge theories with spatial dimensions greater than one is of great physical significance. Here we propose a simple realization of U(1) gauge theory with Rydberg and Rydberg-dressed atom arrays...Simulating U(1) quantum gauge theories with spatial dimensions greater than one is of great physical significance. Here we propose a simple realization of U(1) gauge theory with Rydberg and Rydberg-dressed atom arrays. Within the experimentally accessible range, we find that the various aspects of the U(1) gauge theory can be well simulated, such as the emergence of topological sectors, incommensurability, and the Rokhsar–Kivelson point that hosts deconfined charge excitations and degenerate topological sectors. Our proposal is promising to implement experimentally and exhibits pronounced quantum dynamics.展开更多
We investigate dynamical quantum phase transitions(DQPTs)in Marko-vian open quantum systems using a variational quantum simulation(VQS)algorithm based on quantum state diffusion(QSD).This approach reformulates the Lin...We investigate dynamical quantum phase transitions(DQPTs)in Marko-vian open quantum systems using a variational quantum simulation(VQS)algorithm based on quantum state diffusion(QSD).This approach reformulates the Lindblad master equation as an ensemble of pure-state trajectories,enabling efficient simula-tion of dissipative quantum dynam-ics with effectively reduced quantum resources.Focusing on the one-di-mensional transverse-field Ising mod-el(TFIM),we simulate quench dynamics under both local and global Lindblad dissipation.The QSD-VQS algorithm accurately captures the nonanalytic cusps in the Loschmidt rate function,and reveals their modulation by dissipation strength and system size.Notably,DQPTs are gradually suppressed under strong local dissipation,while they persist under strong global dissipation due to collective environmental effects.Benchmarking against exact Lindblad solutions confirms the high accuracy and scalability of our method.展开更多
Quantum simulation,as a practical application of noisy quantum computing,has aided the study of exotic quantum matters and the implementation of algorithms that outperform classical approaches.Superconducting qubits,o...Quantum simulation,as a practical application of noisy quantum computing,has aided the study of exotic quantum matters and the implementation of algorithms that outperform classical approaches.Superconducting qubits,one of the most promising candidates for realizing universal quantum computing,possess state-of-the-art features like easy integration of qubits,long coherence time,and high-fidelity single-and two-qubit gates.These characteristics have enabled applications of digital quantum simulation in the fields of physics,chemistry,and computer science.In this review,we first present the basic concepts of superconducting qubits,quantum gates,and digital quantum simulations.We also explore recent progress in digital quantum simulations using superconducting qubits,especially in relation to quantum chemistry,quantum matters,combinatorial optimization,and quantum machine learning.Finally,we address the current challenges of digital quantum simulation with superconducting qubits,and provide a perspective on the future of the field.展开更多
Quantum information processing based on Rydberg atoms emerged as a promising direction two decades ago.Recent experimental and theoretical progresses have shined exciting light on this avenue.In this concise review,we...Quantum information processing based on Rydberg atoms emerged as a promising direction two decades ago.Recent experimental and theoretical progresses have shined exciting light on this avenue.In this concise review,we will briefly introduce the basics of Rydberg atoms and their recent applications in associated areas of neutral atom quantum computation and simulation.We shall also include related discussions on quantum optics with Rydberg atomic ensembles,which are increasingly used to explore quantum computation and quantum simulation with photons.展开更多
Quantum simulation has been developed extensively over the past decades,widely applied to different models to explore dynamics in the quantum regime.Rydberg atoms have strong dipole-dipole interactions and interact wi...Quantum simulation has been developed extensively over the past decades,widely applied to different models to explore dynamics in the quantum regime.Rydberg atoms have strong dipole-dipole interactions and interact with each other over a long distance,which makes it straightforward to build many-body interacting quantum systems to simulate specific models.Additionally,neutral atoms are easily manipulated due to their weak interactions.These advantages make Rydberg many-body system an ideal platform to implement quantum simulations.This paper reviews several quantum simulations for different models based on Rydberg many-body systems,including quantum Ising models in one dimension and two dimensions mainly for quantum magnetism,XY model for excitation transport,SSH model for symmetry-protected topological phases,and critical self-organized behaviors in many-body systems.Besides,some challenges and promising directions of quantum simulations based on Rydberg many-body system are discussed in this paper.展开更多
In the past years, great progresses have been made on quantum computation and quantum simulation. Increasing the number of qubits in the quantum processors is expected to be one of the main motivations in the next yea...In the past years, great progresses have been made on quantum computation and quantum simulation. Increasing the number of qubits in the quantum processors is expected to be one of the main motivations in the next years, while noises in manipulation of quantum states may still be inevitable even the precision will improve. For research in this direction, it is necessary to review the available results about noisy multiqubit quantum computation and quantum simulation. The review focuses on multiqubit state generations, quantum computational advantage, and simulating physics of quantum many-body systems. Perspectives of near term noisy intermediate-quantum processors will be discussed.展开更多
Quantum computers promise to solve finite-temperature properties of quantum many-body systems,which is generally challenging for classical computers due to high computational complexities.Here,we report experimental p...Quantum computers promise to solve finite-temperature properties of quantum many-body systems,which is generally challenging for classical computers due to high computational complexities.Here,we report experimental preparations of Gibbs states and excited states of Heisenberg X X and X X Z models by using a 5-qubit programmable superconducting processor.In the experiments,we apply a hybrid quantum–classical algorithm to generate finite temperature states with classical probability models and variational quantum circuits.We reveal that the Hamiltonians can be fully diagonalized with optimized quantum circuits,which enable us to prepare excited states at arbitrary energy density.We demonstrate that the approach has a self-verifying feature and can estimate fundamental thermal observables with a small statistical error.Based on numerical results,we further show that the time complexity of our approach scales polynomially in the number of qubits,revealing its potential in solving large-scale problems.展开更多
Different from the Hermitian case, non-Hermitian(NH) systems have novel properties and strongly relate to open and dissipative quantum systems. In this work, we investigate how to simulate τ-anti-pseudo-Hermitian sys...Different from the Hermitian case, non-Hermitian(NH) systems have novel properties and strongly relate to open and dissipative quantum systems. In this work, we investigate how to simulate τ-anti-pseudo-Hermitian systems in a Hermitian quantum device using linear combinations of unitaries and duality quantum algorithm. Specifying the τ to time-reversal(T) and parity-time-reversal(PT) operators, we construct the two NH two-level systems, design quantum circuits including three qubits, and decide the quantum gates explicitly in detail. We also calculate the success probabilities of the simulation.Experimental implementation can be expected in small quantum simulator.展开更多
This review summarizes the requirement of low temperature conditions in existing experimental approaches to quantum computation and quantum simulation.
Thanks to the quantum simulation,more and more problems in quantum mechanics which were previously inaccessible are now open to us.Capitalizing on the state-of-the-art techniques on quantum coherent control developed ...Thanks to the quantum simulation,more and more problems in quantum mechanics which were previously inaccessible are now open to us.Capitalizing on the state-of-the-art techniques on quantum coherent control developed in past few decades,e.g.,the high-precision quantum gate manipulating,the time-reversal harnessing,the high-fidelity state preparation and tomography,the nuclear magnetic resonance(NMR) system offers a unique platform for quantum simulation of many-body physics and high-energy physics.Here,we review the recent experimental progress and discuss the prospects for quantum simulation realized on NMR systems.展开更多
Recently,quantum simulation of low-dimensional lattice gauge theories(LGTs)has attracted many interests,which may improve our understanding of strongly correlated quantum many-body systems.Here,we propose an implement...Recently,quantum simulation of low-dimensional lattice gauge theories(LGTs)has attracted many interests,which may improve our understanding of strongly correlated quantum many-body systems.Here,we propose an implementation to approximate Z;LGT on superconducting quantum circuits,where the effective theory is a mixture of a LGT and a gauge-broken term.By using matrix product state based methods,both the ground state properties and quench dynamics are systematically investigated.With an increase of the transverse(electric)field,the system displays a quantum phase transition from a disordered phase to a translational symmetry breaking phase.In the ordered phase,an approximate Gauss law of the Z;LGT emerges in the ground state.Moreover,to shed light on the experiments,we also study the quench dynamics,where there is a dynamical signature of the spontaneous translational symmetry breaking.The spreading of the single particle of matter degree is diffusive under the weak transverse field,while it is ballistic with small velocity for the strong field.Furthermore,due to the emergent Gauss law under the strong transverse field,the matter degree can also exhibit confinement dynamics which leads to a strong suppression of the nearest-neighbor hopping.Our results pave the way for simulating the LGT on superconducting circuits,including the quantum phase transition and quench dynamics.展开更多
The quantum critical regime marks a zone in the phase diagram where quantum fluctuation around the critical point plays a significant role at finite temperatures.While it is of great physical interest,simulation of th...The quantum critical regime marks a zone in the phase diagram where quantum fluctuation around the critical point plays a significant role at finite temperatures.While it is of great physical interest,simulation of the quantum critical regime can be difficult on a classical computer due to its intrinsic complexity.Herein,we propose a variational approach,which minimizes the variational free energy,to simulate and locate the quantum critical regime on a quantum computer.The variational quantum algorithm adopts an ansatz by performing an unitary operator on a product of a single-qubit mixed state,in which the entropy can be analytically obtained from the initial state,and thus the free energy can be accessed conveniently.With numeral simulation,using the one-dimensional Kitaev model as a demonstration we show that the quantum critical regime can be identified by accurately evaluating the temperature crossover line.Moreover,the dependencies of both the correlation length and the phase coherence time with temperature are evaluated for the thermal states.Our work suggests a practical way as well as a first step for investigating quantum critical systems at finite temperatures on quantum devices with few qubits.展开更多
We evaluate the impact of temperature on the output behavior of a carbon nanotube field effect transistor (CNFET) based chaotic generator. The sources cause the variations in both current-voltage characteristics of ...We evaluate the impact of temperature on the output behavior of a carbon nanotube field effect transistor (CNFET) based chaotic generator. The sources cause the variations in both current-voltage characteristics of the CNFET device and an overall chaotic circuit is pointed out. To verify the effect of temperature variation on the output dynamics of the chaotic circuit, a simulation is performed by employing the CNFET compact model of Wong et al. in HSPICE with a temperature range from -100℃ to 100℃. The obtained results with time series, frequency spectra, and bifurcation diagram from the simulation demonstrate that temperature plays a significant role in the output dynamics of the CNFET-based chaotic circuit. Thus, temperature-related issues should be taken into account while designing a high-quality chaotic generator with high stability.展开更多
Classical simulation of a quantum system is a hard problem. It’s known that these problems can be solved efficiently by using quantum computers. This study demonstrates the simulation of the molecular Hamiltonian of ...Classical simulation of a quantum system is a hard problem. It’s known that these problems can be solved efficiently by using quantum computers. This study demonstrates the simulation of the molecular Hamiltonian of 2p-π electrons of ethylene in order to calculate the ground state energy. The ground state energy is estimated by an iterative phase estimation algorithm. The ground state is prepared by the adiabatic state preparation and the implementation of the procedure is carried out by numerical simulation of two-qubit NMR quantum simulator. The readout scheme of the simulator is performed by extracting binary bits via NMR interferometer.展开更多
Quantum many-body systems lie at the heart of modern fundamental physics.The study of these systems has revealed a plethora of fascinating phenomena,such as quantum thermalization,many-body localization,and quantum ma...Quantum many-body systems lie at the heart of modern fundamental physics.The study of these systems has revealed a plethora of fascinating phenomena,such as quantum thermalization,many-body localization,and quantum many-body scars.This review provides a comprehensive overview of the recent advances in understanding quantum many-body scars and non-ergodic dynamics in quantum systems on superconducting-circuit platforms,ranging from theoretical mechanisms and effective models to experimental observations.展开更多
In this paper,we present quantum algorithms for a class of highly-oscillatory transport equations,which arise in semi-classical computation of surface hopping problems and other related non-adiabatic quantum dynamics,...In this paper,we present quantum algorithms for a class of highly-oscillatory transport equations,which arise in semi-classical computation of surface hopping problems and other related non-adiabatic quantum dynamics,based on the Born-Oppenheimer approximation.Our method relies on the classical nonlinear geometric optics method,and the recently developed Schrödingerisation approach for quantum simulation of partial differential equations.The Schrödingerisation technique can transform any linear ordinary and partial differential equations into Hamiltonian systems evolving under unitary dynamics,via a warped phase transformation that maps these equations to one higher dimension.We study possible paths for better recoveries of the solution to the original problem by shifting the bad eigenvalues in the Schrödingerized system.Our method ensures the uniform error estimates independent of the wave length,thus allowing numerical accuracy,in maximum norm,even without numerically resolving the physical oscillations.Various numerical experiments are performed to demonstrate the validity of this approach.展开更多
Simulation of open quantum dynamics for various Hamiltonians and spectral densities are ubiquitous for studying various quantum systems.On a quantum computer,only log2N qubits are required for the simulation of an N-d...Simulation of open quantum dynamics for various Hamiltonians and spectral densities are ubiquitous for studying various quantum systems.On a quantum computer,only log2N qubits are required for the simulation of an N-dimensional quantum system,hence simulation in a quantum computer can greatly reduce the computational complexity compared with classical methods.Recently,a quantum simulation approach was proposed for studying photosynthetic light harvesting[npj Quantum Inf.4,52(2018)].In this paper,we apply the approach to simulate the open quantum dynamics of various photosynthetic systems.We show that for Drude—Lorentz spectral density,the dimerized geometries with strong couplings within the donor and acceptor clusters respectively exhibit significantly improved efficiency.We also demonstrate that the overall energy transfer can be optimized when the energy gap between the donor and acceptor clusters matches the optimum of the spectral density.The effects of different types of baths,e.g.,Ohmic,sub-Ohmic,and super-Ohmic spectral densities are also studied.The present investigations demonstrate that the proposed approach is universal for simulating the exact quantum dynamics of photosynthetic systems.展开更多
The interaction between molecules and solid surfaces plays important roles in various applications, including catalysis, sensors, nanoelectronies, and solar cells. Surprisingly, a full understanding of molecule-surfac...The interaction between molecules and solid surfaces plays important roles in various applications, including catalysis, sensors, nanoelectronies, and solar cells. Surprisingly, a full understanding of molecule-surface interaction at the quantum mechanical level has not been achieved even for very simple molecules, such as water. In this mini-review, we report recent progresses and current status of studies on interaction between representative molecules and surfaces. Taking water/metal, DNA bases/carbon nanotube, and organic dye molecule/oxide as examples, we focus on the understanding on the microstructure, electronic property, and electron-ion dynamics involved in these systems obtained from first-principles quantum mechanical calculations. We find that a quantum mechanical description of molecule surface interaction is essential for understanding interface phenomenon at the microscopic level, such as wetting. New theoretical developments, including van der Waals density functional and quantum nuclei treatment, improve further our understanding of surface interactions.展开更多
Avian magnetoreception is the capacity for avians to sense the direction of the Earth's magnetic field. Discovered more than forty years ago, it has attracted intensive studies over the years. One promising model ...Avian magnetoreception is the capacity for avians to sense the direction of the Earth's magnetic field. Discovered more than forty years ago, it has attracted intensive studies over the years. One promising model for describing this capacity in avians is the widely used reference-and-probe model where radical pairs within the eyes of bird combines to form singlet and triplet quantum states.The yield depends on the angle between the Earth's magnetic field and the molecules' axis, hence the relative value of yield of the singlet state or triplet state enables avians to sense the direction. Here we report the experimental demonstration of avian magnetoreception in a nuclear magnetic resonance quantum information processor. It is shown clearly from the experiment that the yield of the singlet state attains maximum when it is normal to the Earth's magnetic field, and the experimental results agree with theory very well.展开更多
The motional trembling(‘zitterbewegung’)of a relativistic electron governed by Dirac equation was originally predicted by Schr¨odinger in the early days of quantum mechanics and simulated in a recent experiment...The motional trembling(‘zitterbewegung’)of a relativistic electron governed by Dirac equation was originally predicted by Schr¨odinger in the early days of quantum mechanics and simulated in a recent experiment with a single trapped ultracold ion.We investigate stable and instable confinements of a single trapped ion in a Paul trap under different conditions relevant to parity.Since our treatment involves neither restriction of Lamb-Dicke limit nor rotating-wave approximation,we may demonstrate different quantum dynamics of the single trapped ion in a wide range of the trapping parameters.We discuss the origin of the zitterbewegung which is relevant to the stability of the ion trapping.展开更多
基金supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1404204 and 2022YFA1403700)the National Natural Science Foundation of China (Grant Nos. 12274086, 11534001 and 11925402)+5 种基金funding from the National Science Foundation of China (Grant Nos. 12274046, 11874094, 12147102, and 12347101)Chongqing Natural Science Foundation (Grant No. CSTB2022NSCQ-JQX0018)the Fundamental Research Funds for the Central Universities (Grant No. 2021CDJZYJH-003)Xiaomi Foundation/Xiaomi Young Talents Programthe supports of the start-up funding of Westlake Universitysupport from the Natural Sciences and Engineering Research Council of Canada (NSERC) through Discovery Grants。
文摘Simulating U(1) quantum gauge theories with spatial dimensions greater than one is of great physical significance. Here we propose a simple realization of U(1) gauge theory with Rydberg and Rydberg-dressed atom arrays. Within the experimentally accessible range, we find that the various aspects of the U(1) gauge theory can be well simulated, such as the emergence of topological sectors, incommensurability, and the Rokhsar–Kivelson point that hosts deconfined charge excitations and degenerate topological sectors. Our proposal is promising to implement experimentally and exhibits pronounced quantum dynamics.
基金supported by the National Natural Science Foundation of China(Nos.22273122,T2350009)the Guangdong Provincial Natural Science Foundation(No.2024A1515011504)computational resources and services provided by the national supercomputer center in Guangzhou.
文摘We investigate dynamical quantum phase transitions(DQPTs)in Marko-vian open quantum systems using a variational quantum simulation(VQS)algorithm based on quantum state diffusion(QSD).This approach reformulates the Lindblad master equation as an ensemble of pure-state trajectories,enabling efficient simula-tion of dissipative quantum dynam-ics with effectively reduced quantum resources.Focusing on the one-di-mensional transverse-field Ising mod-el(TFIM),we simulate quench dynamics under both local and global Lindblad dissipation.The QSD-VQS algorithm accurately captures the nonanalytic cusps in the Loschmidt rate function,and reveals their modulation by dissipation strength and system size.Notably,DQPTs are gradually suppressed under strong local dissipation,while they persist under strong global dissipation due to collective environmental effects.Benchmarking against exact Lindblad solutions confirms the high accuracy and scalability of our method.
基金supported by the National Natural Science Foundation of China(No.12304559)the Zhejiang Provincial Natural Science Foundation of China(No.LDQ23A040001).
文摘Quantum simulation,as a practical application of noisy quantum computing,has aided the study of exotic quantum matters and the implementation of algorithms that outperform classical approaches.Superconducting qubits,one of the most promising candidates for realizing universal quantum computing,possess state-of-the-art features like easy integration of qubits,long coherence time,and high-fidelity single-and two-qubit gates.These characteristics have enabled applications of digital quantum simulation in the fields of physics,chemistry,and computer science.In this review,we first present the basic concepts of superconducting qubits,quantum gates,and digital quantum simulations.We also explore recent progress in digital quantum simulations using superconducting qubits,especially in relation to quantum chemistry,quantum matters,combinatorial optimization,and quantum machine learning.Finally,we address the current challenges of digital quantum simulation with superconducting qubits,and provide a perspective on the future of the field.
基金Project supported by the National Key R&D Program of China(Grant Nos.2018YFA0306504 and 2018YFA0306503)the Key-Area Research and Development Program of Guang Dong Province,China(Grant No.2019B030330001)+1 种基金the National Natural Science Foundation of China(Grant Nos.91636213,11654001,91736311,91836302,and U1930201)support from Beijing Academy of Quantum Information Sciences(BAQIS)Research Program(Grant No.Y18G24)。
文摘Quantum information processing based on Rydberg atoms emerged as a promising direction two decades ago.Recent experimental and theoretical progresses have shined exciting light on this avenue.In this concise review,we will briefly introduce the basics of Rydberg atoms and their recent applications in associated areas of neutral atom quantum computation and simulation.We shall also include related discussions on quantum optics with Rydberg atomic ensembles,which are increasingly used to explore quantum computation and quantum simulation with photons.
文摘Quantum simulation has been developed extensively over the past decades,widely applied to different models to explore dynamics in the quantum regime.Rydberg atoms have strong dipole-dipole interactions and interact with each other over a long distance,which makes it straightforward to build many-body interacting quantum systems to simulate specific models.Additionally,neutral atoms are easily manipulated due to their weak interactions.These advantages make Rydberg many-body system an ideal platform to implement quantum simulations.This paper reviews several quantum simulations for different models based on Rydberg many-body systems,including quantum Ising models in one dimension and two dimensions mainly for quantum magnetism,XY model for excitation transport,SSH model for symmetry-protected topological phases,and critical self-organized behaviors in many-body systems.Besides,some challenges and promising directions of quantum simulations based on Rydberg many-body system are discussed in this paper.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 11934018, T2121001, 11904393, and 92065114)the CAS Strategic Priority Research Program (Grant No. XDB28000000)+1 种基金Beijing Natural Science Foundation (Grant No. Z200009)Scientific Instrument Developing Project of Chinese Academy of Sciences (Grant No. YJKYYQ20200041)。
文摘In the past years, great progresses have been made on quantum computation and quantum simulation. Increasing the number of qubits in the quantum processors is expected to be one of the main motivations in the next years, while noises in manipulation of quantum states may still be inevitable even the precision will improve. For research in this direction, it is necessary to review the available results about noisy multiqubit quantum computation and quantum simulation. The review focuses on multiqubit state generations, quantum computational advantage, and simulating physics of quantum many-body systems. Perspectives of near term noisy intermediate-quantum processors will be discussed.
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2017YFA0304300)the National Natural Science Foundation of China(Grant Nos.11934018,11747601,and 11975294)+4 种基金Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)Scientific Instrument Developing Project of Chinese Academy of Sciences(Grant No.YJKYYQ20200041)Beijing Natural Science Foundation(Grant No.Z200009)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0303030001)Chinese Academy of Sciences(Grant No.QYZDB-SSW-SYS032)。
文摘Quantum computers promise to solve finite-temperature properties of quantum many-body systems,which is generally challenging for classical computers due to high computational complexities.Here,we report experimental preparations of Gibbs states and excited states of Heisenberg X X and X X Z models by using a 5-qubit programmable superconducting processor.In the experiments,we apply a hybrid quantum–classical algorithm to generate finite temperature states with classical probability models and variational quantum circuits.We reveal that the Hamiltonians can be fully diagonalized with optimized quantum circuits,which enable us to prepare excited states at arbitrary energy density.We demonstrate that the approach has a self-verifying feature and can estimate fundamental thermal observables with a small statistical error.Based on numerical results,we further show that the time complexity of our approach scales polynomially in the number of qubits,revealing its potential in solving large-scale problems.
基金funded by the National Natural Science Foundation of China (Grant No. 12175002)Beijing Natural Science Foundation (Grant No. 1222020)NCUT Talents Project and Special Fund。
文摘Different from the Hermitian case, non-Hermitian(NH) systems have novel properties and strongly relate to open and dissipative quantum systems. In this work, we investigate how to simulate τ-anti-pseudo-Hermitian systems in a Hermitian quantum device using linear combinations of unitaries and duality quantum algorithm. Specifying the τ to time-reversal(T) and parity-time-reversal(PT) operators, we construct the two NH two-level systems, design quantum circuits including three qubits, and decide the quantum gates explicitly in detail. We also calculate the success probabilities of the simulation.Experimental implementation can be expected in small quantum simulator.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0303301)the National Natural Science Foundation of China(Grant Nos.11674009 and 11921005)+1 种基金the Beijing Natural Science Foundation,China(Grant No.JQ18002)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)。
文摘This review summarizes the requirement of low temperature conditions in existing experimental approaches to quantum computation and quantum simulation.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFA0308100)the National Natural Science Foundation of China(Grant Nos.12075110,11905099,11605005,11875159,and U1801661)+2 种基金Guangdong Basic and Applied Basic Research Foundation,China(Grant No.2019A1515011383)Science,Technology and Innovation Commission of Shenzhen Municipality(Grant Nos.ZDSYS20170303165926217,JCYJ20170412152620376,and JCYJ20180302174036418)Guangdong Innovative and Entrepreneurial Research Team Program,China(Grant No.2016ZT06D348)。
文摘Thanks to the quantum simulation,more and more problems in quantum mechanics which were previously inaccessible are now open to us.Capitalizing on the state-of-the-art techniques on quantum coherent control developed in past few decades,e.g.,the high-precision quantum gate manipulating,the time-reversal harnessing,the high-fidelity state preparation and tomography,the nuclear magnetic resonance(NMR) system offers a unique platform for quantum simulation of many-body physics and high-energy physics.Here,we review the recent experimental progress and discuss the prospects for quantum simulation realized on NMR systems.
基金supported by China Postdoctoral Science Foundation(Grant No.2020T130643)the Fundamental Research Funds for the Central Universities,and the National Natural Science Foundation of China(Grant No.12047554)+5 种基金support from the National Key Research and Development Program of China(Grant No.2016YFA0300502)the Research Grants Council of Hong Kong SAR China(Grant No.17303019)support from the National Key R&D Program of China(Grant Nos.2016YFA0302104 and 2016YFA0300600)the National Natural Science Foundation of China(Grant Nos.11774406 and 11934018)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)Beijing Academy of Quantum Information Science(Grant No.Y18G07)。
文摘Recently,quantum simulation of low-dimensional lattice gauge theories(LGTs)has attracted many interests,which may improve our understanding of strongly correlated quantum many-body systems.Here,we propose an implementation to approximate Z;LGT on superconducting quantum circuits,where the effective theory is a mixture of a LGT and a gauge-broken term.By using matrix product state based methods,both the ground state properties and quench dynamics are systematically investigated.With an increase of the transverse(electric)field,the system displays a quantum phase transition from a disordered phase to a translational symmetry breaking phase.In the ordered phase,an approximate Gauss law of the Z;LGT emerges in the ground state.Moreover,to shed light on the experiments,we also study the quench dynamics,where there is a dynamical signature of the spontaneous translational symmetry breaking.The spreading of the single particle of matter degree is diffusive under the weak transverse field,while it is ballistic with small velocity for the strong field.Furthermore,due to the emergent Gauss law under the strong transverse field,the matter degree can also exhibit confinement dynamics which leads to a strong suppression of the nearest-neighbor hopping.Our results pave the way for simulating the LGT on superconducting circuits,including the quantum phase transition and quench dynamics.
基金supported by the National Natural Science Foundation of China(Grant No.12005065)the Guangdong Basic and Applied Basic Research Fund(Grant No.2021A1515010317)。
文摘The quantum critical regime marks a zone in the phase diagram where quantum fluctuation around the critical point plays a significant role at finite temperatures.While it is of great physical interest,simulation of the quantum critical regime can be difficult on a classical computer due to its intrinsic complexity.Herein,we propose a variational approach,which minimizes the variational free energy,to simulate and locate the quantum critical regime on a quantum computer.The variational quantum algorithm adopts an ansatz by performing an unitary operator on a product of a single-qubit mixed state,in which the entropy can be analytically obtained from the initial state,and thus the free energy can be accessed conveniently.With numeral simulation,using the one-dimensional Kitaev model as a demonstration we show that the quantum critical regime can be identified by accurately evaluating the temperature crossover line.Moreover,the dependencies of both the correlation length and the phase coherence time with temperature are evaluated for the thermal states.Our work suggests a practical way as well as a first step for investigating quantum critical systems at finite temperatures on quantum devices with few qubits.
基金Supported by the Basic Science Research Program through the National Research Foundation of Korea Funded by the Ministry of Education,Science and Technology under Grant No 2012-0002777
文摘We evaluate the impact of temperature on the output behavior of a carbon nanotube field effect transistor (CNFET) based chaotic generator. The sources cause the variations in both current-voltage characteristics of the CNFET device and an overall chaotic circuit is pointed out. To verify the effect of temperature variation on the output dynamics of the chaotic circuit, a simulation is performed by employing the CNFET compact model of Wong et al. in HSPICE with a temperature range from -100℃ to 100℃. The obtained results with time series, frequency spectra, and bifurcation diagram from the simulation demonstrate that temperature plays a significant role in the output dynamics of the CNFET-based chaotic circuit. Thus, temperature-related issues should be taken into account while designing a high-quality chaotic generator with high stability.
文摘Classical simulation of a quantum system is a hard problem. It’s known that these problems can be solved efficiently by using quantum computers. This study demonstrates the simulation of the molecular Hamiltonian of 2p-π electrons of ethylene in order to calculate the ground state energy. The ground state energy is estimated by an iterative phase estimation algorithm. The ground state is prepared by the adiabatic state preparation and the implementation of the procedure is carried out by numerical simulation of two-qubit NMR quantum simulator. The readout scheme of the simulator is performed by extracting binary bits via NMR interferometer.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LD25A050002)the National Natural Science Foundation of China(No.12375021)the National Key Research and Development Program of China(No.2022YFA1404203).
文摘Quantum many-body systems lie at the heart of modern fundamental physics.The study of these systems has revealed a plethora of fascinating phenomena,such as quantum thermalization,many-body localization,and quantum many-body scars.This review provides a comprehensive overview of the recent advances in understanding quantum many-body scars and non-ergodic dynamics in quantum systems on superconducting-circuit platforms,ranging from theoretical mechanisms and effective models to experimental observations.
文摘In this paper,we present quantum algorithms for a class of highly-oscillatory transport equations,which arise in semi-classical computation of surface hopping problems and other related non-adiabatic quantum dynamics,based on the Born-Oppenheimer approximation.Our method relies on the classical nonlinear geometric optics method,and the recently developed Schrödingerisation approach for quantum simulation of partial differential equations.The Schrödingerisation technique can transform any linear ordinary and partial differential equations into Hamiltonian systems evolving under unitary dynamics,via a warped phase transformation that maps these equations to one higher dimension.We study possible paths for better recoveries of the solution to the original problem by shifting the bad eigenvalues in the Schrödingerized system.Our method ensures the uniform error estimates independent of the wave length,thus allowing numerical accuracy,in maximum norm,even without numerically resolving the physical oscillations.Various numerical experiments are performed to demonstrate the validity of this approach.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos.11674033,11474026,and 11505007Beijing Natural Science Foundation under Grant No.1202017N.L.acknowledges partial support from JST PRESTO through Grant No.JPMJPR18GC.
文摘Simulation of open quantum dynamics for various Hamiltonians and spectral densities are ubiquitous for studying various quantum systems.On a quantum computer,only log2N qubits are required for the simulation of an N-dimensional quantum system,hence simulation in a quantum computer can greatly reduce the computational complexity compared with classical methods.Recently,a quantum simulation approach was proposed for studying photosynthetic light harvesting[npj Quantum Inf.4,52(2018)].In this paper,we apply the approach to simulate the open quantum dynamics of various photosynthetic systems.We show that for Drude—Lorentz spectral density,the dimerized geometries with strong couplings within the donor and acceptor clusters respectively exhibit significantly improved efficiency.We also demonstrate that the overall energy transfer can be optimized when the energy gap between the donor and acceptor clusters matches the optimum of the spectral density.The effects of different types of baths,e.g.,Ohmic,sub-Ohmic,and super-Ohmic spectral densities are also studied.The present investigations demonstrate that the proposed approach is universal for simulating the exact quantum dynamics of photosynthetic systems.
文摘The interaction between molecules and solid surfaces plays important roles in various applications, including catalysis, sensors, nanoelectronies, and solar cells. Surprisingly, a full understanding of molecule-surface interaction at the quantum mechanical level has not been achieved even for very simple molecules, such as water. In this mini-review, we report recent progresses and current status of studies on interaction between representative molecules and surfaces. Taking water/metal, DNA bases/carbon nanotube, and organic dye molecule/oxide as examples, we focus on the understanding on the microstructure, electronic property, and electron-ion dynamics involved in these systems obtained from first-principles quantum mechanical calculations. We find that a quantum mechanical description of molecule surface interaction is essential for understanding interface phenomenon at the microscopic level, such as wetting. New theoretical developments, including van der Waals density functional and quantum nuclei treatment, improve further our understanding of surface interactions.
基金supported by the National Natural Science Foundation of China(Grant Nos.11175094 and 91221205)the National Basic Research Program of China(Grant No 2015CB921002)the China Postdoctoral Science Foundation(Grant No.2015M571011).
文摘Avian magnetoreception is the capacity for avians to sense the direction of the Earth's magnetic field. Discovered more than forty years ago, it has attracted intensive studies over the years. One promising model for describing this capacity in avians is the widely used reference-and-probe model where radical pairs within the eyes of bird combines to form singlet and triplet quantum states.The yield depends on the angle between the Earth's magnetic field and the molecules' axis, hence the relative value of yield of the singlet state or triplet state enables avians to sense the direction. Here we report the experimental demonstration of avian magnetoreception in a nuclear magnetic resonance quantum information processor. It is shown clearly from the experiment that the yield of the singlet state attains maximum when it is normal to the Earth's magnetic field, and the experimental results agree with theory very well.
基金supported by the National Natural Science Foundation of China(Grant Nos.11274352 and 11274351)
文摘The motional trembling(‘zitterbewegung’)of a relativistic electron governed by Dirac equation was originally predicted by Schr¨odinger in the early days of quantum mechanics and simulated in a recent experiment with a single trapped ultracold ion.We investigate stable and instable confinements of a single trapped ion in a Paul trap under different conditions relevant to parity.Since our treatment involves neither restriction of Lamb-Dicke limit nor rotating-wave approximation,we may demonstrate different quantum dynamics of the single trapped ion in a wide range of the trapping parameters.We discuss the origin of the zitterbewegung which is relevant to the stability of the ion trapping.