The discovery and synthesis of colloidal quantum dots(QDs)were awarded the 2023 Nobel Prize in Chemistry.QDs,as a novel class of materials distinct from traditional molecular materials and bulk materials,have rapidly ...The discovery and synthesis of colloidal quantum dots(QDs)were awarded the 2023 Nobel Prize in Chemistry.QDs,as a novel class of materials distinct from traditional molecular materials and bulk materials,have rapidly emerged in the field of optoelectronic applications due to their unique size-,composition-,surface-,and process-dependent optoelectronic properties.More importantly,their ultra-high specific surface area allows for the application of various surface chemical engineering techniques to regulate and optimize their optoelectronic performance.Furthermore,three-dimensionally confined QDs can achieve nearly perfect photoluminescence quantum yields and extended hot carrier cooling times.Particularly,their ability to be colloidally synthesized and processed using industrially friendly solvents is driving transformative changes in the fields of electronics,photonics,and optoelectronics.展开更多
Colloidal quantum dots(CQDs)are highly regarded for their outstanding photovoltaic characteristics,including excellent color purity,stability,high photoluminescence quantum yield(PLQY),narrow emission spectra,and ease...Colloidal quantum dots(CQDs)are highly regarded for their outstanding photovoltaic characteristics,including excellent color purity,stability,high photoluminescence quantum yield(PLQY),narrow emission spectra,and ease of solution processing.Despite significant progress in quantum dot light-emitting diodes(QLEDs)technology since its inception in 1994,blue QLEDs still fall short in efficiency and lifespan compared to red and green versions.The toxicity concerns associated with Cd/Pb-based quantum dots(QDs)have spurred the development of heavy-metal-free alternatives,such as groupⅡ−Ⅵ(e.g.,ZnSe-based QDs),groupⅢ−Ⅴ(e.g.,InP,GaN QDs),and carbon dots(CDs).In this review,we discuss the key properties and development history of quantum dots(QDs),various synthesis approaches,the role of surface ligands,and important considerations in developing core/shell(C/S)structured QDs.Additionally,we provide an outlook on the challenges and future directions for blue QLEDs.展开更多
Quantum dots(QDs)can modulate the solar spectrum through the down-conversion mechanism to better match the spectral response of solar cells.Following previous work,this paper first tested the response of QD solar cell...Quantum dots(QDs)can modulate the solar spectrum through the down-conversion mechanism to better match the spectral response of solar cells.Following previous work,this paper first tested the response of QD solar cells to specific monochromatic light,and found that QDs can effectively improve the photoelectric conversion efficiency(PCE)in the ultraviolet(UV)band by comparison.Then the photoelectric properties of the QD solar cells are tested under the air-mass 1.5(AM1.5)and air-mass 0(AM0)spectra.The experimental results show that because the absorption band of QDs is in the UV region,the space solar cells in the AM0 spectrum can obtain better PCE after coating QDs.The research results show the technical route of space solar cells with down-conversion mechanism,and put forward an important direction for the application of space solar photovoltaic(PV)technology,and have a good application prospect.展开更多
Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yiel...Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs.展开更多
Quantum dots(QDs),a type of nanoscale semiconductor material with unique optical and electrical properties like adjustable emission and high photoluminescence quantum yields,are suitable for applications in optoelectr...Quantum dots(QDs),a type of nanoscale semiconductor material with unique optical and electrical properties like adjustable emission and high photoluminescence quantum yields,are suitable for applications in optoelectronics.However,QDs are typically degraded under humid and high-temperature circumstances,greatly limiting their practical value.Coating the QD surface with an inorganic silica layer is a feasible method for improving stability and endurance in a variety of applications.This paper comprehensively reviews silica coating methodologies on QD surfaces and explores their applications in optoelectronic domains.Firstly,the paper provides mainstream silica coating approaches,which can be divided into two categories:in-situ hydrolysis of silylating reagents on QD surfaces and template techniques for encapsulation QDs.Subsequently,the recent applications of the silica-coated QDs on optoelectronic fields including light-emitting diodes,solar cells,photodetectors were discussed.Finally,it reviews recent advances in silica-coated QD technology and prospects for future applications.展开更多
With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ...With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers.展开更多
The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and...The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and mixed reality applications.Alongside the controlled synthesis of high-performance QDs,a reliable QD patterning technology is crucial in overcoming this challenge.Among the various methods available,photolithography-based patterning technologies show great potentials in producing ultra-fine QD patterns at micron scale.This review article presents the recent advancements in the field of QD patterning using photolithography techniques and explores their applications in micro-display technology.Firstly,we discuss QD patterning through photolithography techniques employing photoresist(PR),which falls into two categories:PRassisted photolithography and photolithography of QDPR.Subsequently,direct photolithography techniques based on photo-induced crosslinking of photosensitive groups and photo-induced ligand cleavage mechanisms are thoroughly reviewed.Meanwhile,we assess the performance of QD arrays fabricated using these photolithography techniques and their integration into QD light emitting diode display devices as well as color conversionbased micro light emitting diode display devices.Lastly,we summarize the most recent developments in this field and outline future prospects.展开更多
Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachm...Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.展开更多
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Neve...Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Nevertheless,employing PEDOT:PSS in supercapacitors(SC)in its pristine state presents challenges due to its suboptimal electrochemical performance and operational instability.To surmount these limita-tions,PEDOT:PSS has been integrated with carbon-based materials to form flexible electrodes,which ex-hibit physical and chemical stability during SC operation.We developed a streamlined fabrication process for high-performance SC electrodes composed of PEDOT:PSS and carbon quantum dots(CQDs).The CQDs were synthesized under microwave irradiation,yielding green-and red-light emissions.Through optimiz-ing the ratios of CQDs to PEDOT:PSS,the SC electrodes were prepared using a spray-coating technique,marking a significant improvement in device performance with a high volumetric capacitance(104.10 F cm-3),impressive energy density(19.68 Wh cm^(-3)),and excellent cyclic stability,retaining~85% of its original volumetric capacitance after 15,000 repeated GCD cycles.Moreover,the SCs,when utilized as a flexible substrate,demonstrated the ability to maintain up to~85% of their electrochemical performance even after 3,000 bending cycles(at a bending angle of 60°).These attributes render this hybrid composite an ideal candidate for a lightweight smart energy storage component in portable and wearable electronic technologies.展开更多
Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-po...Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices.展开更多
The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investiga...The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices.展开更多
As an essential candidate for environment-friendly luminescent quantum dots(QDs),CuInS-based QDs have attracted more attention in recent years.However,several drawbacks still hamper their industrial applications,such ...As an essential candidate for environment-friendly luminescent quantum dots(QDs),CuInS-based QDs have attracted more attention in recent years.However,several drawbacks still hamper their industrial applications,such as lower photoluminescence quantum yield(PLQY),complex synthetic pathways,uncontrollable emission spectra,and insufficient photostability.In this study,CuInZnS@ZnS core/shell QDs was prepared via a one-pot/three-step synthetic scheme with accurate and tunable control of PL spectra.Then their ensemble spectroscopic properties during nucleation formation,alloying,and ZnS shell growth processes were systematically investigated.PL peaks of these QDs can be precisely manipulated from 530 to 850 nm by controlling the stoichiometric ratio of Cu/In,Zn^(2+)doping and ZnS shell growth.In particular,CuInZnS@ZnS QDs possess a significantly long emission lifetime(up to 750 ns),high PLQY(up to 85%),and excellent crystallinity.Their spectroscopic evolution is well validated by Cu-deficient related intragap emission model.By controlling the stoichiometric ratio of Cu/In,two distinct Cu-deficient related emission pathways are established based on the differing oxidation states of Cu defects.Therefore,this work provides deeper insights for fabricating high luminescent ternary or quaternary-alloyed QDs.展开更多
Ischemia is a significant factor affecting the repair of peripheral nerve injuries,while exosomes have been shown to promote angiogenesis.To further investigate the detailed processes and efficacy of exosome thera⁃py ...Ischemia is a significant factor affecting the repair of peripheral nerve injuries,while exosomes have been shown to promote angiogenesis.To further investigate the detailed processes and efficacy of exosome thera⁃py for ischemic peripheral nerve injuries,this study utilized glucose-modified near-infrared-II(NIR-II)quantum dots(QDs)to label adipose-derived stem cell exosomes(QDs-ADSC-Exos),enabling long-term in vivo NIR-II imaging of exosome treatment for ischemic peripheral nerve damage.Experimental results confirmed that QDs can be used for non-invasive in vitro labeling of exosomes,with QDs-ADSC-Exos exhibiting strong fluorescence signals in the NIR-II window and demonstrating favorable NIR-II imaging characteristics in vivo.Notably,QDsADSC-Exos showed accumulation at the site of nerve injury in cases of ischemic peripheral nerve damage.Func⁃tional neurological assessments indicated that QDs-ADSC-Exos effectively promoted neural regeneration.This study highlights the potential of exosomes in treating ischemic peripheral nerve injuries and elucidates the spatio⁃temporal characteristics of exosome therapy,providing objective evidence for the further optimization of exosomebased treatment protocols.展开更多
Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective al...Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective alternative to traditional infrared detector technology.Recently,thanks to the solution processing properties of quantum dots and their ability to integrate with silicon-based readout circuits on a single chip,infrared detectors based on HgTe CQDs have shown great application prospects.However,facing the challenges of vertically stacked photovoltaic devices,such as barrier layer matching and film non-uniformity,most devices integrated with readout circuits still use a planar structure,which limits the efficiency of light absorption and the effective separation and collection of photo-generated carriers.Here,by synthesizing high-quality HgTe CQDs and precisely controlling the interface quality,we have successfully fabricated a photovoltaic detector based on HgTe and ZnO QDs.At a working temperature of 80 K,this detector achieved a low dark current of 5.23×10^(-9)A cm^(-2),a high rectification ratio,and satisfactory detection sensitivity.This work paves a new way for the vertical integration of HgTe CQDs on silicon-based readout circuits,demonstrating their great potential in the field of high-performance infrared detection.展开更多
Calcium ions(Ca^(2+))and manganese ions(Mn^(2+))are essential for sustaining life activities and are key monitoring indicators in drinking water.Developing highly sensitive,selective,and portable detection methods for...Calcium ions(Ca^(2+))and manganese ions(Mn^(2+))are essential for sustaining life activities and are key monitoring indicators in drinking water.Developing highly sensitive,selective,and portable detection methods for Ca^(2+)and Mn^(2+)is significant for water quality monitoring and human health.In this paper,blue fluorescent Ti3C2 MXene-based quantum dots(MQDs,λ_(em)=445 nm)are prepared using Ti_(3)C_(2)MXene as the precursor.Through the chelation effect of ethylene diamine tetraacetic acid(EDTA),a blue and red dual-emission fluorescent probe,MQDs-EDTA-Eu^(3+)-DPA,was constructed.Herein,dipicolinic acid(DPA)acts as an absorbing ligand and significantly enhances the red fluorescence of europium ions(Eu^(3+))at 616 nm through the“antenna effect”.The blue fluorescence of MQDs serves as an internal reference signal.High concentrations of Ca^(2+)can quench the red fluorescence of Eu^(3+)-DPA;Mn^(2+)can be excited to emit purple fluorescence at 380 nm after coordinating with DPA,red fluorescence of Eu^(3+)-DPA serves as the internal reference signal.Based on the above two fluorescence intensity changes,ratiometric fluorescence detection methods for Ca^(2+)and Mn^(2+)are established.The fluorescence intensity ratio(IF_(616)/IF_(445))exhibits a linear relationship with Ca^(2+)in the range of 35-120μmol/L,with a detection limit of 5.98μmol/L.The fluorescence intensity ratio(IF_(380)/IF_(616))shows good linearity with Mn^(2+)in the range of 0-14μmol/L,with a detection limit of 28.6 nmol/L.This method was successfully applied to the quantitative analysis of Ca^(2+)and Mn^(2+)in commercially available mineral water(Nongfu Spring,Ganten,and Evergrande),with recovery rates of 80.6%-117%and relative standard deviations(RSD)of 0.76%-4.6%.Additionally,by preparing MQD-based fluorescent test strips,visual detections of Ca^(2+)and Mn^(2+)are achieved.This work demonstrates the application potential of MQDs in the field of visual fluorescence sensing of ions in water quality.展开更多
Hybrid organic–inorganic lead halide perovskites have emerged as a promising material for high-efficiency solar cells,yet challenges related to crystallization and defects limit their performance and stability.This s...Hybrid organic–inorganic lead halide perovskites have emerged as a promising material for high-efficiency solar cells,yet challenges related to crystallization and defects limit their performance and stability.This study investigates the use of perovskite quantum dots(QDs)as crystallization seeds to enhance the quality of FAPbI_(3)perovskite films and improve the performance of perovskite solar cells(PSCs).We demonstrate that CsPbI_(3)and CsPbBr_(3)QDs effectively guide the crystallization process,leading to the formation of larger crystals with preferential orientations,particularly the(001)and(002)planes,which are associated with reduced defect densities.This seedmediated growth strategy resulted in PSCs with power conversion efficiencies(PCEs)of 24.75%and 24.11%,respectively,compared to the baseline efficiency of 22.05%for control devices.Furthermore,devices incorporating QD-treated perovskite films exhibited remarkable stability,maintaining over 80%of their initial PCE after 1000 h of simulated sunlight exposure,a significant improvement over the control.Detailed optoelectronic characterization revealed reduced non-radiative recombination and enhanced charge transport in QD-treated devices.These findings highlight the potential of QDs as a powerful tool to improve perovskite crystallization,facet orientation,and overall device performance,offering a promising route to enhance both efficiency and stability in PSCs.展开更多
Carbon quantum dots are a new type of fluorescent nanomaterials with broad applications in drug delivery,bioimaging,solar cells,and photocatalysis due to their unique biocompatibility,optical properties and easy funct...Carbon quantum dots are a new type of fluorescent nanomaterials with broad applications in drug delivery,bioimaging,solar cells,and photocatalysis due to their unique biocompatibility,optical properties and easy functionalization.In the meantime,because of its high carbon content,renewable nature,and environmental friendliness,lignin has drawn the attention of researchers as a desirable raw material for creating carbon quantum dots.Here we review the synthesis of carbon quantum dots from lignin,focusing on synthetic methods,properties,and applications in energy,and photocatalysis.Later,we propose some new development prospects from preparation methods,luminescence mechanism research,application,and commercial cost of lignin carbon quantum dots.Finally,based on this,the development prospects of this field are prospected and summarized.展开更多
Sodium-ion-based electrochromic device(SECD)has been identified as an appealing cost-effective alternative of lithium-based counterparts,only if it can address the challenges in association with the inadequate electro...Sodium-ion-based electrochromic device(SECD)has been identified as an appealing cost-effective alternative of lithium-based counterparts,only if it can address the challenges in association with the inadequate electrochromic performance.In this regard,the quantized strategy is a particularly promising approach owing to the large surface-to-volume ratio and high reaction activity.However,quantum dots inevitably suffer from volume changes and undesired aggregation during electrochemical cycling.Herein,bioinspired from the robust connection of alveoli in lung,we propose a stable electrode,where WO_(3) quantum dots(WQDs)are robustly anchored on Ti_(3)C_(2) MXene through the strong chemical bonds of W-O-Ti.Theoretical results reveal the fundamental mechanism of the volume changes within WQDs and the dynamic diffusion process of sodium ions.The WQD@MXene electrodes exhibit a nearly twofold enhancement in cycling performance(1000 vs 500 cycles),coloration speed(3.2 vs 6.0 s),and areal capacity(87.5 vs 43.9 mAhm^(-2) at 0.1 mA cm^(-2)),compared to those of the pristine WQD electrode.As a proof-of-concept demonstration,a smart house system integrated with SECDs demonstrates a“3-in-1”device,enabling a combination of energy-saving,energy storage,and display functionalities.The present work significantly advances the versatile applications of cost-effective electrochromic electronics in interdisciplinary.展开更多
Metal halide perovskites exhibit excellent absorption properties,high carrier mobility,and remarkable charge transfer ability,showcasing significant potential as light harvesters in new-generation photovoltaic and opt...Metal halide perovskites exhibit excellent absorption properties,high carrier mobility,and remarkable charge transfer ability,showcasing significant potential as light harvesters in new-generation photovoltaic and optoelectronic technologies.Their development has seen unprecedented growth since their discovery.Similar to metal halide perovskite developments,perovskite quantum dots(PQDs)have demonstrated significant versatility in terms of shape,dimension,bandgap,and optical properties,making them suitable for the development of optoelectronic devices.This review discusses various fabrication methods of PQDs,delves into their degradation mechanisms,and explores strategies for enhancing their performance with their applications in a variety of technological fields.Their elevated surface-to-volume ratio highlights their importance in increasing solar cell efficiency.PQDs are also essential for increasing the performance of perovskite solar cells,photodetectors,and lightemitting diodes,which makes them indispensable for solid-state lighting applications.PQDs'unique optoelectronic characteristics make them suitable for sophisticated sensing applications,giving them greater capabilities in this field.Furthermore,PQDs'resistive switching behavior makes them a good fit for applications in memory devices.PQDs'vast potential also encompasses the fields of quantum optics and communication,especially for uses like nanolasers and polarized light detectors.Even though stability and environmental concerns remain major obstacles,research efforts are being made to actively address these issues,enabling PQDs to obtain their full potential in device applications.Simply put,understanding PQDs'real potential lies in overcoming obstacles and utilizing their inherent qualities.展开更多
Graphene quantum dots(GQDs)are a class of promising carbon-based nanomaterials that have attracted considerable interest from researchers due to their excellent physical,chemical,and biological properties.However,the ...Graphene quantum dots(GQDs)are a class of promising carbon-based nanomaterials that have attracted considerable interest from researchers due to their excellent physical,chemical,and biological properties.However,the high cost,toxicity,and laborious preparation process of GQDs also limit their widespread use.To address this issue,the actual research directions consist in replacing traditional non-renewable feedstocks via screening cheap,easily available,and renewable biomass materials based on the concept of resource conservation and environmental friendliness.Herein,the state-of-the-art technologies in the green preparation of GQDs using biomass as carbon source are reported.Initially,the green synthesis strategies as well as the structural,optical,and biosafety properties of GQDs are discussed in detail.Subsequently,the most representative applications of GQDs in energy and environmental remediation fields are summarized.Finally,the current challenges and future potential of the GQDs are presented.展开更多
文摘The discovery and synthesis of colloidal quantum dots(QDs)were awarded the 2023 Nobel Prize in Chemistry.QDs,as a novel class of materials distinct from traditional molecular materials and bulk materials,have rapidly emerged in the field of optoelectronic applications due to their unique size-,composition-,surface-,and process-dependent optoelectronic properties.More importantly,their ultra-high specific surface area allows for the application of various surface chemical engineering techniques to regulate and optimize their optoelectronic performance.Furthermore,three-dimensionally confined QDs can achieve nearly perfect photoluminescence quantum yields and extended hot carrier cooling times.Particularly,their ability to be colloidally synthesized and processed using industrially friendly solvents is driving transformative changes in the fields of electronics,photonics,and optoelectronics.
基金supported by the National Key Research and Development Program of China(2024YFE0103600)the National Natural Science Foundation of China(NSFC)(62474119,62205230,and 62175171)Suzhou Key Laboratory of Functional Nano&Soft Materials,Collaborative Innovation Center of Suzhou Nano Science&Technology,the 111 Project,Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.
文摘Colloidal quantum dots(CQDs)are highly regarded for their outstanding photovoltaic characteristics,including excellent color purity,stability,high photoluminescence quantum yield(PLQY),narrow emission spectra,and ease of solution processing.Despite significant progress in quantum dot light-emitting diodes(QLEDs)technology since its inception in 1994,blue QLEDs still fall short in efficiency and lifespan compared to red and green versions.The toxicity concerns associated with Cd/Pb-based quantum dots(QDs)have spurred the development of heavy-metal-free alternatives,such as groupⅡ−Ⅵ(e.g.,ZnSe-based QDs),groupⅢ−Ⅴ(e.g.,InP,GaN QDs),and carbon dots(CDs).In this review,we discuss the key properties and development history of quantum dots(QDs),various synthesis approaches,the role of surface ligands,and important considerations in developing core/shell(C/S)structured QDs.Additionally,we provide an outlook on the challenges and future directions for blue QLEDs.
基金supported by the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(No.2022KJ133).
文摘Quantum dots(QDs)can modulate the solar spectrum through the down-conversion mechanism to better match the spectral response of solar cells.Following previous work,this paper first tested the response of QD solar cells to specific monochromatic light,and found that QDs can effectively improve the photoelectric conversion efficiency(PCE)in the ultraviolet(UV)band by comparison.Then the photoelectric properties of the QD solar cells are tested under the air-mass 1.5(AM1.5)and air-mass 0(AM0)spectra.The experimental results show that because the absorption band of QDs is in the UV region,the space solar cells in the AM0 spectrum can obtain better PCE after coating QDs.The research results show the technical route of space solar cells with down-conversion mechanism,and put forward an important direction for the application of space solar photovoltaic(PV)technology,and have a good application prospect.
文摘Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs.
基金supported by the National Natural Science Foundation of China(Nos.62374142 and 22005255)Fundamental Research Funds for the Central Universities(Nos.20720220085 and 20720240064)+2 种基金External Cooperation Program of Fujian(No.2022I0004)Major Science and Technology Project of Xiamen in China(No.3502Z20191015)Xiamen Natural Science Foundation Youth Project(No.3502Z202471002)。
文摘Quantum dots(QDs),a type of nanoscale semiconductor material with unique optical and electrical properties like adjustable emission and high photoluminescence quantum yields,are suitable for applications in optoelectronics.However,QDs are typically degraded under humid and high-temperature circumstances,greatly limiting their practical value.Coating the QD surface with an inorganic silica layer is a feasible method for improving stability and endurance in a variety of applications.This paper comprehensively reviews silica coating methodologies on QD surfaces and explores their applications in optoelectronic domains.Firstly,the paper provides mainstream silica coating approaches,which can be divided into two categories:in-situ hydrolysis of silylating reagents on QD surfaces and template techniques for encapsulation QDs.Subsequently,the recent applications of the silica-coated QDs on optoelectronic fields including light-emitting diodes,solar cells,photodetectors were discussed.Finally,it reviews recent advances in silica-coated QD technology and prospects for future applications.
基金financial support from the Doctoral Foundation of Henan University of Engineering(No.D2022025)National Natural Science Foundation of China(No.U2004162)+1 种基金National Natural Science Foundation of China(No.52302138)Key Project for Science and Technology Development of Henan Province(No.232102320221)。
文摘With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers.
基金supported by the National Natural Science Foundation of China(62374142,12175189 and 11904302)External Cooperation Program of Fujian(2022I0004)+1 种基金Fundamental Research Funds for the Central Universities(20720190005 and 20720220085)Major Science and Technology Project of Xiamen in China(3502Z20191015).
文摘The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and mixed reality applications.Alongside the controlled synthesis of high-performance QDs,a reliable QD patterning technology is crucial in overcoming this challenge.Among the various methods available,photolithography-based patterning technologies show great potentials in producing ultra-fine QD patterns at micron scale.This review article presents the recent advancements in the field of QD patterning using photolithography techniques and explores their applications in micro-display technology.Firstly,we discuss QD patterning through photolithography techniques employing photoresist(PR),which falls into two categories:PRassisted photolithography and photolithography of QDPR.Subsequently,direct photolithography techniques based on photo-induced crosslinking of photosensitive groups and photo-induced ligand cleavage mechanisms are thoroughly reviewed.Meanwhile,we assess the performance of QD arrays fabricated using these photolithography techniques and their integration into QD light emitting diode display devices as well as color conversionbased micro light emitting diode display devices.Lastly,we summarize the most recent developments in this field and outline future prospects.
基金supported by MEXT KAKENHI Grant(24K01295,26286013).
文摘Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.
基金supported by the National Research Foundation of Korea(NRF)through a grant provided by the Korean government(No.NRF-2021R1F1A1063451).
文摘Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)is a highly successful conductive polymer utilized as an electrode material in energy storage units for portable and wearable electronic de-vices.Nevertheless,employing PEDOT:PSS in supercapacitors(SC)in its pristine state presents challenges due to its suboptimal electrochemical performance and operational instability.To surmount these limita-tions,PEDOT:PSS has been integrated with carbon-based materials to form flexible electrodes,which ex-hibit physical and chemical stability during SC operation.We developed a streamlined fabrication process for high-performance SC electrodes composed of PEDOT:PSS and carbon quantum dots(CQDs).The CQDs were synthesized under microwave irradiation,yielding green-and red-light emissions.Through optimiz-ing the ratios of CQDs to PEDOT:PSS,the SC electrodes were prepared using a spray-coating technique,marking a significant improvement in device performance with a high volumetric capacitance(104.10 F cm-3),impressive energy density(19.68 Wh cm^(-3)),and excellent cyclic stability,retaining~85% of its original volumetric capacitance after 15,000 repeated GCD cycles.Moreover,the SCs,when utilized as a flexible substrate,demonstrated the ability to maintain up to~85% of their electrochemical performance even after 3,000 bending cycles(at a bending angle of 60°).These attributes render this hybrid composite an ideal candidate for a lightweight smart energy storage component in portable and wearable electronic technologies.
基金supported by the National Natural Science Foundation of China (No. 62204079)the Science and Technology Development Project of Henan Province (Nos.202300410048, 202300410057)+2 种基金the China Postdoctoral Science Foundation (No. 2022M711037)the Intelligence Introduction Plan of Henan Province in 2021 (No. CXJD2021008)Henan University Fund。
文摘Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices.
基金support from the National Key Research and Development Program of China(2024YFA1207700)National Natural Science Foundation of China(52072141,52102170).
文摘The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices.
基金Fund Project for Transformation of Scientific and Technological Achievements of Jiangsu Province of China(BA2023020)。
文摘As an essential candidate for environment-friendly luminescent quantum dots(QDs),CuInS-based QDs have attracted more attention in recent years.However,several drawbacks still hamper their industrial applications,such as lower photoluminescence quantum yield(PLQY),complex synthetic pathways,uncontrollable emission spectra,and insufficient photostability.In this study,CuInZnS@ZnS core/shell QDs was prepared via a one-pot/three-step synthetic scheme with accurate and tunable control of PL spectra.Then their ensemble spectroscopic properties during nucleation formation,alloying,and ZnS shell growth processes were systematically investigated.PL peaks of these QDs can be precisely manipulated from 530 to 850 nm by controlling the stoichiometric ratio of Cu/In,Zn^(2+)doping and ZnS shell growth.In particular,CuInZnS@ZnS QDs possess a significantly long emission lifetime(up to 750 ns),high PLQY(up to 85%),and excellent crystallinity.Their spectroscopic evolution is well validated by Cu-deficient related intragap emission model.By controlling the stoichiometric ratio of Cu/In,two distinct Cu-deficient related emission pathways are established based on the differing oxidation states of Cu defects.Therefore,this work provides deeper insights for fabricating high luminescent ternary or quaternary-alloyed QDs.
基金Supported by the National Natural Science Foundation of China(82371373,W2412120)the Shanghai Natural Science Foundation(21ZR1436100).
文摘Ischemia is a significant factor affecting the repair of peripheral nerve injuries,while exosomes have been shown to promote angiogenesis.To further investigate the detailed processes and efficacy of exosome thera⁃py for ischemic peripheral nerve injuries,this study utilized glucose-modified near-infrared-II(NIR-II)quantum dots(QDs)to label adipose-derived stem cell exosomes(QDs-ADSC-Exos),enabling long-term in vivo NIR-II imaging of exosome treatment for ischemic peripheral nerve damage.Experimental results confirmed that QDs can be used for non-invasive in vitro labeling of exosomes,with QDs-ADSC-Exos exhibiting strong fluorescence signals in the NIR-II window and demonstrating favorable NIR-II imaging characteristics in vivo.Notably,QDsADSC-Exos showed accumulation at the site of nerve injury in cases of ischemic peripheral nerve damage.Func⁃tional neurological assessments indicated that QDs-ADSC-Exos effectively promoted neural regeneration.This study highlights the potential of exosomes in treating ischemic peripheral nerve injuries and elucidates the spatio⁃temporal characteristics of exosome therapy,providing objective evidence for the further optimization of exosomebased treatment protocols.
基金Supported by National Key Research and Development Program in the 14th five year plan(2021YFA1200700)Strategic Priority Re⁃search Program of the Chinese Academy of Sciences(XDB0580000)Natural Science Foundation of China(62025405,62104235,62105348).
文摘Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective alternative to traditional infrared detector technology.Recently,thanks to the solution processing properties of quantum dots and their ability to integrate with silicon-based readout circuits on a single chip,infrared detectors based on HgTe CQDs have shown great application prospects.However,facing the challenges of vertically stacked photovoltaic devices,such as barrier layer matching and film non-uniformity,most devices integrated with readout circuits still use a planar structure,which limits the efficiency of light absorption and the effective separation and collection of photo-generated carriers.Here,by synthesizing high-quality HgTe CQDs and precisely controlling the interface quality,we have successfully fabricated a photovoltaic detector based on HgTe and ZnO QDs.At a working temperature of 80 K,this detector achieved a low dark current of 5.23×10^(-9)A cm^(-2),a high rectification ratio,and satisfactory detection sensitivity.This work paves a new way for the vertical integration of HgTe CQDs on silicon-based readout circuits,demonstrating their great potential in the field of high-performance infrared detection.
基金The Tertiary Education Scientific Research Project of the Guangzhou Municipal Education Bureau(2024312227)Innovative and Entrepreneurial Projects of Guangzhou University Students(202411078014)+2 种基金Guangzhou University Open Sharing Fund for Instruments and Equipment(2025)National Major Scientific Research Instrument Development Project(22227804)Sub-subject of the National Key Research Project(2023YFB3210100)。
文摘Calcium ions(Ca^(2+))and manganese ions(Mn^(2+))are essential for sustaining life activities and are key monitoring indicators in drinking water.Developing highly sensitive,selective,and portable detection methods for Ca^(2+)and Mn^(2+)is significant for water quality monitoring and human health.In this paper,blue fluorescent Ti3C2 MXene-based quantum dots(MQDs,λ_(em)=445 nm)are prepared using Ti_(3)C_(2)MXene as the precursor.Through the chelation effect of ethylene diamine tetraacetic acid(EDTA),a blue and red dual-emission fluorescent probe,MQDs-EDTA-Eu^(3+)-DPA,was constructed.Herein,dipicolinic acid(DPA)acts as an absorbing ligand and significantly enhances the red fluorescence of europium ions(Eu^(3+))at 616 nm through the“antenna effect”.The blue fluorescence of MQDs serves as an internal reference signal.High concentrations of Ca^(2+)can quench the red fluorescence of Eu^(3+)-DPA;Mn^(2+)can be excited to emit purple fluorescence at 380 nm after coordinating with DPA,red fluorescence of Eu^(3+)-DPA serves as the internal reference signal.Based on the above two fluorescence intensity changes,ratiometric fluorescence detection methods for Ca^(2+)and Mn^(2+)are established.The fluorescence intensity ratio(IF_(616)/IF_(445))exhibits a linear relationship with Ca^(2+)in the range of 35-120μmol/L,with a detection limit of 5.98μmol/L.The fluorescence intensity ratio(IF_(380)/IF_(616))shows good linearity with Mn^(2+)in the range of 0-14μmol/L,with a detection limit of 28.6 nmol/L.This method was successfully applied to the quantitative analysis of Ca^(2+)and Mn^(2+)in commercially available mineral water(Nongfu Spring,Ganten,and Evergrande),with recovery rates of 80.6%-117%and relative standard deviations(RSD)of 0.76%-4.6%.Additionally,by preparing MQD-based fluorescent test strips,visual detections of Ca^(2+)and Mn^(2+)are achieved.This work demonstrates the application potential of MQDs in the field of visual fluorescence sensing of ions in water quality.
基金supported by the Startup Research-Fund of Henan Academy of Sciences(grant number 241817242)Shenzhen Fundamental Research Scheme-General Program(JCYJ20220818100217037)+2 种基金Key University Laboratory of Highly Efficient Utilization of Solar Energy,Sustainable Development of Guangdong,Southern University of Science and Technology,Shenzhen 518055,China(Y01256331)the National Natural Science Foundation of China(22379017,22179009,U22A2072)supported by the Pico Center at SUSTech CRF which receives support from the Presidential Fund and Development and Reform Commission of Shenzhen Municipality.
文摘Hybrid organic–inorganic lead halide perovskites have emerged as a promising material for high-efficiency solar cells,yet challenges related to crystallization and defects limit their performance and stability.This study investigates the use of perovskite quantum dots(QDs)as crystallization seeds to enhance the quality of FAPbI_(3)perovskite films and improve the performance of perovskite solar cells(PSCs).We demonstrate that CsPbI_(3)and CsPbBr_(3)QDs effectively guide the crystallization process,leading to the formation of larger crystals with preferential orientations,particularly the(001)and(002)planes,which are associated with reduced defect densities.This seedmediated growth strategy resulted in PSCs with power conversion efficiencies(PCEs)of 24.75%and 24.11%,respectively,compared to the baseline efficiency of 22.05%for control devices.Furthermore,devices incorporating QD-treated perovskite films exhibited remarkable stability,maintaining over 80%of their initial PCE after 1000 h of simulated sunlight exposure,a significant improvement over the control.Detailed optoelectronic characterization revealed reduced non-radiative recombination and enhanced charge transport in QD-treated devices.These findings highlight the potential of QDs as a powerful tool to improve perovskite crystallization,facet orientation,and overall device performance,offering a promising route to enhance both efficiency and stability in PSCs.
基金Sponsorship Program by CAST(2023QNRC001)University-Industry Collaborative Education Program(220901115200913,220901115201954)+2 种基金Hunan Provincial Natural Science Foundation of China(2022JJ40007)Jiangsu Agricultural Science and Technology Innovation Fund(CX(22)3047)the National Natural Science Foundation of China(32201491)。
文摘Carbon quantum dots are a new type of fluorescent nanomaterials with broad applications in drug delivery,bioimaging,solar cells,and photocatalysis due to their unique biocompatibility,optical properties and easy functionalization.In the meantime,because of its high carbon content,renewable nature,and environmental friendliness,lignin has drawn the attention of researchers as a desirable raw material for creating carbon quantum dots.Here we review the synthesis of carbon quantum dots from lignin,focusing on synthetic methods,properties,and applications in energy,and photocatalysis.Later,we propose some new development prospects from preparation methods,luminescence mechanism research,application,and commercial cost of lignin carbon quantum dots.Finally,based on this,the development prospects of this field are prospected and summarized.
基金supported by the Singapore National Research Foundation(NRFCRP26-2021-0003,NRF),for research conducted at the National University of Singaporethe support by the ARTIC(ADT-RP2-Low Loss and Tunable Ferroelectrics for Sub-6G Applications).
文摘Sodium-ion-based electrochromic device(SECD)has been identified as an appealing cost-effective alternative of lithium-based counterparts,only if it can address the challenges in association with the inadequate electrochromic performance.In this regard,the quantized strategy is a particularly promising approach owing to the large surface-to-volume ratio and high reaction activity.However,quantum dots inevitably suffer from volume changes and undesired aggregation during electrochemical cycling.Herein,bioinspired from the robust connection of alveoli in lung,we propose a stable electrode,where WO_(3) quantum dots(WQDs)are robustly anchored on Ti_(3)C_(2) MXene through the strong chemical bonds of W-O-Ti.Theoretical results reveal the fundamental mechanism of the volume changes within WQDs and the dynamic diffusion process of sodium ions.The WQD@MXene electrodes exhibit a nearly twofold enhancement in cycling performance(1000 vs 500 cycles),coloration speed(3.2 vs 6.0 s),and areal capacity(87.5 vs 43.9 mAhm^(-2) at 0.1 mA cm^(-2)),compared to those of the pristine WQD electrode.As a proof-of-concept demonstration,a smart house system integrated with SECDs demonstrates a“3-in-1”device,enabling a combination of energy-saving,energy storage,and display functionalities.The present work significantly advances the versatile applications of cost-effective electrochromic electronics in interdisciplinary.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(no.RS-2022-00165798)。
文摘Metal halide perovskites exhibit excellent absorption properties,high carrier mobility,and remarkable charge transfer ability,showcasing significant potential as light harvesters in new-generation photovoltaic and optoelectronic technologies.Their development has seen unprecedented growth since their discovery.Similar to metal halide perovskite developments,perovskite quantum dots(PQDs)have demonstrated significant versatility in terms of shape,dimension,bandgap,and optical properties,making them suitable for the development of optoelectronic devices.This review discusses various fabrication methods of PQDs,delves into their degradation mechanisms,and explores strategies for enhancing their performance with their applications in a variety of technological fields.Their elevated surface-to-volume ratio highlights their importance in increasing solar cell efficiency.PQDs are also essential for increasing the performance of perovskite solar cells,photodetectors,and lightemitting diodes,which makes them indispensable for solid-state lighting applications.PQDs'unique optoelectronic characteristics make them suitable for sophisticated sensing applications,giving them greater capabilities in this field.Furthermore,PQDs'resistive switching behavior makes them a good fit for applications in memory devices.PQDs'vast potential also encompasses the fields of quantum optics and communication,especially for uses like nanolasers and polarized light detectors.Even though stability and environmental concerns remain major obstacles,research efforts are being made to actively address these issues,enabling PQDs to obtain their full potential in device applications.Simply put,understanding PQDs'real potential lies in overcoming obstacles and utilizing their inherent qualities.
基金supported by the following funding:National Natural Science Foundation of China(Nos.52070057 and 51961165104)Project of a Thousand Youth Talents(No.AUGA2160100917)Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.2019DX09)。
文摘Graphene quantum dots(GQDs)are a class of promising carbon-based nanomaterials that have attracted considerable interest from researchers due to their excellent physical,chemical,and biological properties.However,the high cost,toxicity,and laborious preparation process of GQDs also limit their widespread use.To address this issue,the actual research directions consist in replacing traditional non-renewable feedstocks via screening cheap,easily available,and renewable biomass materials based on the concept of resource conservation and environmental friendliness.Herein,the state-of-the-art technologies in the green preparation of GQDs using biomass as carbon source are reported.Initially,the green synthesis strategies as well as the structural,optical,and biosafety properties of GQDs are discussed in detail.Subsequently,the most representative applications of GQDs in energy and environmental remediation fields are summarized.Finally,the current challenges and future potential of the GQDs are presented.