期刊文献+
共找到91篇文章
< 1 2 5 >
每页显示 20 50 100
A low-noise and high-stability DC source for superconducting quantum circuits
1
作者 Daxiong Sun Jiawei Zhang +16 位作者 Peisheng Huang Yubin Zhang Zechen Guo Tingjin Chen Rui Wang Xuandong Sun Jiajian Zhang Wenhui Huang Jiawei Qiu Ji Chu Ziyu Tao Weijie Guo Xiayu Linpeng Ji Jiang Jingjing Niu Youpeng Zhong Dapeng Yu 《Chinese Physics B》 2025年第9期48-55,共8页
With the rapid scaling of superconducting quantum processors,electronic control systems relying on commercial off-the-shelf instruments face critical bottlenecks in signal density,power consumption,and crosstalk mitig... With the rapid scaling of superconducting quantum processors,electronic control systems relying on commercial off-the-shelf instruments face critical bottlenecks in signal density,power consumption,and crosstalk mitigation.Here we present a custom dual-channel direct current(DC)source module(QPower)dedicated to large-scale superconducting quantum processors.The module delivers a voltage range of±7 V with 200 m A maximum current per channel,while achieving the following key performance benchmarks:noise spectral density of√Hz at 10 k Hz,output ripple<500μV_(pp)within 20 MHz bandwidth,and long-term voltage drift<5μVpp over 12 hours.Integrated into the control electronics of a 66-qubit quantum processor,QPower enables qubit coherence time of T_(1)=87.6μs and Ramsey dephasing time of T_(2)=5.1μs,with qubit resonance frequency drift constrained to±40 k Hz during 12-hour operation.This modular design is compact in size and efficient in energy consumption,providing a scalable DC source solution for intermediate-scale quantum processors with stringent noise and stability requirements,with potential extensions to other quantum hardware platforms and precision measurement systems. 展开更多
关键词 superconducting quantum circuits superconducting qubit low noise DC source
原文传递
In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits
2
作者 Hao-Ran Tao Lei Du +8 位作者 Liang-Liang Guo Yong Chen Hai-Feng Zhang Xiao-Yan Yang Guo-Liang Xu Chi Zhang Zhi-Long Jia Peng Duan Guo-Ping Guo 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期133-137,共5页
The performance of Nb superconducting quantum devices is predominantly limited by dielectric loss at the metal–air interface,where Nb2O5 is considered the main loss source.Here,we suppress the formation of native oxi... The performance of Nb superconducting quantum devices is predominantly limited by dielectric loss at the metal–air interface,where Nb2O5 is considered the main loss source.Here,we suppress the formation of native oxides by in-situ deposition of a TiN capping layer on the Nb film.With TiN capping layers,no Nb2O5 forms on the surface of the Nb film.The quality factor Qi of the Nb resonator increases from 5.6×10^(5) to 7.9×10^(5) at low input power and from 6.8×10^(6) to 1.1×10^(7)at high input power.Furthermore,the TiN capping layer also shows good aging resistance in Nb resonator devices,with no significant performance fluctuations after one month of aging.These findings highlight the effectiveness of TiN capping layers in enhancing the performance and longevity of Nb superconducting quantum devices. 展开更多
关键词 ANTI-AGING oxidation dielectric loss Nb superconducting quantum circuits
原文传递
Direct measurement for general quantum states using parametric quantum circuits
3
作者 Zhiyuan Wang Zijing Zhang Yuan Zhao 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第1期39-45,共7页
In the field of quantum information,the acquisition of information for unknown quantum states is very important.When we only need to obtain specific elements of a state density matrix,the traditional quantum state tom... In the field of quantum information,the acquisition of information for unknown quantum states is very important.When we only need to obtain specific elements of a state density matrix,the traditional quantum state tomography will become very complicated,because it requires a global quantum state reconstruction.Direct measurement of the quantum state allows us to obtain arbitrary specific matrix elements of the quantum state without state reconstruction,so direct measurement schemes have obtained extensive attention.Recently,some direct measurement schemes based on weak values have been proposed,but extra auxiliary states in these schemes are necessary and it will increase the complexity of the practical experiment.Meanwhile,the post-selection process in the scheme will reduce the utilization of resources.In order to avoid these disadvantages,a direct measurement scheme without auxiliary states is proposed in this paper.In this scheme,we achieve the direct measurement of quantum states by using quantum circuits,then we extend it to the measurement of general multi-particle states and complete the error analysis.Finally,when we take into account the dephasing of the quantum states,we modify the circuits and the modified circuits still work for the dephasing case. 展开更多
关键词 direct quantum tomography quantum state measurement quantum circuits quantum gates
原文传递
Phase-controlled coherent population trapping in superconducting quantum circuits
4
作者 程广玲 王一平 陈爱喜 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期215-220,共6页
We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a singl... We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a single A-type three-level fluxonium qubit, the coherent population trapping could be obtainable and it is very sensitive to the relative phase and amplitudes of the applied fields. When the relative phase is tuned to 0 or π, the maximal atomic coherence is present and coherent population trapping occurs. While for the choice of π/2, the atomic coherence becomes weak. Meanwhile, for the fixed relative phase π/2, the value of coherence would decrease with the increase of Rabi frequency of the external field coupled with two lower levels. The responsible physical mechanism is quantum interference induced by the control fields, which is indicated in the dressed-state representation. The microwave coherent phenomenon is present in our scheme, which will have potential applications in optical communication and nonlinear optics in solid-state devices. 展开更多
关键词 coherent population trapping phase control superconducting quantum circuits
原文传递
Probabilistic Teleportation of an Arbitrary Two-Particle State and Its Quantum Circuits 被引量:5
5
作者 GUO Zhan-Ying FANG Jian-Xing +1 位作者 ZHU Shi-Qun QIAN Xue-Min 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第6期1013-1017,共5页
Two simple schemes for probabilistic teleportation of an arbitrary unknown two-particle state using a non-maximally entangled EPR pair and a non-maximally entangled GHZ state as quantum channels are proposed. After re... Two simple schemes for probabilistic teleportation of an arbitrary unknown two-particle state using a non-maximally entangled EPR pair and a non-maximally entangled GHZ state as quantum channels are proposed. After receiving Alice's Bell state measurement results, Bob performs a collective unitary transformation on his inherent particles without introducing the auxiliary qubit. The original state can be probabilistically teleported. Meanwhile, quantum circuits for realization of successful teleportation are also presented. 展开更多
关键词 probabilistic teleportation arbitrary two-particle state unitary transformation quantum circuit
在线阅读 下载PDF
Quantum circuits for realizing deterministic and exact teleportation via two partially entangled pairs of particles
6
作者 李文东 张建立 顾永建 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第3期482-487,共6页
Deterministic and exact teleportation can be achieved via two partially entangled pairs of particles [Gu Y J 2006 Opt. Comm. 259 385]. The key point of the protocol is a generalized measurement described by a positive... Deterministic and exact teleportation can be achieved via two partially entangled pairs of particles [Gu Y J 2006 Opt. Comm. 259 385]. The key point of the protocol is a generalized measurement described by a positive operator- valued measure, which can be realized by performing a unitary operation in the extended space and a conventional Von Neumann orthogonal measurement. By decomposing the evolution process from the initial state to the final state, we construct the quantum circuits for realizing the unitary operation with quantum Toffoli gates, and thus provide a physical means to realize the teleportation. Our method for constructing quantum circuits differs from the usual methods based on decomposition of unitary matrices, and is convenient for a large class of quantum processes involving generalized measurements. 展开更多
关键词 quantum circuit TELEPORTATION partially entangled state generalized measurement
原文传递
A Novel Framework to Construct S-Box Quantum Circuits Using System Modeling: Application to 4-Bit S-Boxes
7
作者 Yongjin Jeon Seungjun Baek Jongsung Kim 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期545-561,共17页
Quantum computers accelerate many algorithms based on the superposition principle of quantum mechanics.The Grover algorithm provides significant performance to malicious users attacking symmetric key systems.Since the... Quantum computers accelerate many algorithms based on the superposition principle of quantum mechanics.The Grover algorithm provides significant performance to malicious users attacking symmetric key systems.Since the performance of attacks using quantum computers depends on the efficiency of the quantum circuit of the encryption algorithms,research research on the implementation of quantum circuits is essential.This paper presents a new framework to construct quantum circuits of substitution boxes(S-boxes)using system modeling.We model the quantum circuits of S-boxes using two layers:Toffoli and linear layers.We generate vector spaces based on the values of qubits used in the linear layers and apply them to find quantum circuits.The framework finds the circuit bymatching elements of vector spaces generated fromthe input and output of a given S-box,using the forward search or themeet-in-the-middle strategy.We developed a tool to apply this framework to 4-bit S-boxes.While the 4-bit S-box quantum circuit construction tool LIGHTER-R only finds circuits that can be implemented with four qubits,the proposed tool achieves the circuits with five qubits.The proposed tool can find quantum circuits of 4-bit odd permutations based on the controlled NOT,NOT,and Toffoli gates,whereas LIGHTER-R is unable to perform this task in the same environment.We expect this technique to become a critical step toward optimizing S-box quantum circuits. 展开更多
关键词 System modeling quantum circuit S-box circuit quantum computer
在线阅读 下载PDF
Realization of Quantum Circuits in Fock Space
8
作者 MALei LIYun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第5期787-789,共3页
In this letter, by using the method we offered in our paper [L. Ma and Y.D. Zhang, Commun. Theor. Phys.(Beijing, China) 36 (2001) 119], some extended quantum logic gates, such as quantum counter, quantum adder, are st... In this letter, by using the method we offered in our paper [L. Ma and Y.D. Zhang, Commun. Theor. Phys.(Beijing, China) 36 (2001) 119], some extended quantum logic gates, such as quantum counter, quantum adder, are studied and their expressions are given. It may be useful for us to study the more complicated quantum logic circuits deeply. 展开更多
关键词 quantum computer quantum logic gate quantum circuit
在线阅读 下载PDF
An Extended Approach for Generating Unitary Matrices for Quantum Circuits
9
作者 Zhiqiang Li Wei Zhang +4 位作者 Gaoman Zhang Juan Dai Jiajia Hu Marek Perkowski Xiaoyu Song 《Computers, Materials & Continua》 SCIE EI 2020年第3期1413-1421,共9页
In this paper,we do research on generating unitary matrices for quantum circuits automatically.We consider that quantum circuits are divided into six types,and the unitary operator expressions for each type are offere... In this paper,we do research on generating unitary matrices for quantum circuits automatically.We consider that quantum circuits are divided into six types,and the unitary operator expressions for each type are offered.Based on this,we propose an algorithm for computing the circuit unitary matrices in detail.Then,for quantum logic circuits composed of quantum logic gates,a faster method to compute unitary matrices of quantum circuits with truth table is introduced as a supplement.Finally,we apply the proposed algorithm to different reversible benchmark circuits based on NCT library(including NOT gate,Controlled-NOT gate,Toffoli gate)and generalized Toffoli(GT)library and provide our experimental results. 展开更多
关键词 quantum circuit unitary matrix quantum logic gate reversible circuit truth table
在线阅读 下载PDF
Bosonic quantum error correction codes in superconducting quantum circuits 被引量:7
10
作者 Weizhou Cai Yuwei Ma +2 位作者 Weiting Wang Chang-Ling Zou Luyan Sun 《Fundamental Research》 CAS 2021年第1期50-67,共18页
Quantum information is vulnerable to environmental noise and experimental imperfections,hindering the reli-ability of practical quantum information processors.Therefore,quantum error correction(QEC)that can pro-tect q... Quantum information is vulnerable to environmental noise and experimental imperfections,hindering the reli-ability of practical quantum information processors.Therefore,quantum error correction(QEC)that can pro-tect quantum information against noise is vital for universal and scalable quantum computation.Among many different experimental platforms,superconducting quantum circuits and bosonic encodings in superconducting microwave modes are appealing for their unprecedented potential in QEC.During the last few years,bosonic QEC is demonstrated to reach the break-even point,i.e.the lifetime of a logical qubit is enhanced to exceed that of any individual components composing the experimental system.Beyond that,universal gate sets and fault-tolerant operations on the bosonic codes are also realized,pushing quantum information processing towards the QEC era.In this article,we review the recent progress of the bosonic codes,including the Gottesman-Kitaev-Preskill codes,cat codes,and binomial codes,and discuss the opportunities of bosonic codes in various quantum applications,ranging from fault-tolerant quantum computation to quantum metrology.We also summarize the challenges associated with the bosonic codes and provide an outlook for the potential research directions in the long terms. 展开更多
关键词 quantum error correction Bosonic codes Superconducting quantum circuits quantum communication quantum simulation quantum metrology
原文传递
A new design of parity-preserving reversible multipliers based on multiple-control toffoli synthesis targeting emerging quantum circuits
11
作者 Mojtaba NOORALLAHZADEH Mohammad MOSLEH Kamalika DATTA 《Frontiers of Computer Science》 SCIE EI CSCD 2024年第6期229-244,共16页
With the recent demonstration of quantum computers,interests in the field of reversible logic synthesis and optimization have taken a different turn.As every quantum operation is inherently reversible,there is an imme... With the recent demonstration of quantum computers,interests in the field of reversible logic synthesis and optimization have taken a different turn.As every quantum operation is inherently reversible,there is an immense motivation for exploring reversible circuit design and optimization.When it comes to faults in circuits,the parity-preserving feature donates to the detection of permanent and temporary faults.In the context of reversible circuits,the parity-preserving property ensures that the input and output parities are equal.In this paper we suggest six parity-preserving reversible blocks(ZFATSL)with improved quantum cost.The reversible blocks are synthesized using an existing synthesis method that generates a netlist of multiple-control Toffoli(MCT)gates.Various optimization rules are applied at the reversible circuit level,followed by transformation into a netlist of elementary quantum gates from the NCV library.The designs of full-adder and unsigned and signed multipliers are proposed using the functional blocks that possess parity-preserving properties.The proposed designs are compared with state-of-the-art methods and found to be better in terms of cost of realization.Average savings of 25.04%,20.89%,21.17%,and 51.03%,and 18.59%,13.82%,13.82%,and 27.65% respectively,are observed for 4-bit unsigned and 5-bit signed multipliers in terms of quantum cost,garbage output,constant input,and gate count as compared to recent works. 展开更多
关键词 reversible circuits parity-preserving NCV library multiple-control Toffoli gates quantum circuits quantum cost
原文传递
LIRB-Based Quantum Circuit Fidelity Assessment and Gate Fault Diagnosis
12
作者 Mengdi Yang Feng Yue +11 位作者 Weilong Wang Xiangdong Meng Lixin Wang Pengyu Han Haoran He Benzheng Yuan Zhiqiang Fan Chenhui Wang Qiming Du Danyang Zheng Xuefei Feng Zheng Shan 《Computers, Materials & Continua》 2025年第2期2215-2233,共19页
Quantum circuit fidelity is a crucial metric for assessing the accuracy of quantum computation results and indicating the precision of quantum algorithm execution. The primary methods for assessing quantum circuit fid... Quantum circuit fidelity is a crucial metric for assessing the accuracy of quantum computation results and indicating the precision of quantum algorithm execution. The primary methods for assessing quantum circuit fidelity include direct fidelity estimation and mirror circuit fidelity estimation. The former is challenging to implement in practice, while the latter requires substantial classical computational resources and numerous experimental runs. In this paper, we propose a fidelity estimation method based on Layer Interleaved Randomized Benchmarking, which decomposes a complex quantum circuit into multiple sublayers. By independently evaluating the fidelity of each layer, one can comprehensively assess the performance of the entire quantum circuit. This layered evaluation strategy not only enhances accuracy but also effectively identifies and analyzes errors in specific quantum gates or qubits through independent layer evaluation. Simulation results demonstrate that the proposed method improves circuit fidelity by an average of 6.8% and 4.1% compared to Layer Randomized Benchmarking and Interleaved Randomized Benchmarking methods in a thermal relaxation noise environment, and by 40% compared to Layer RB in a bit-flip noise environment. Moreover, the method detects preset faulty quantum gates in circuits generated by the Munich Quantum Toolkit Benchmark, verifying the model’s validity and providing a new tool for faulty gate detection in quantum circuits. 展开更多
关键词 quantum circuits Interleaved Random Benchmarking(IRB) circuit fidelity fault gates
在线阅读 下载PDF
A new method of constructing adversarial examplesfor quantum variational circuits
13
作者 颜金歌 闫丽丽 张仕斌 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期268-272,共5页
A quantum variational circuit is a quantum machine learning model similar to a neural network.A crafted adversarial example can lead to incorrect results for the model.Using adversarial examples to train the model wil... A quantum variational circuit is a quantum machine learning model similar to a neural network.A crafted adversarial example can lead to incorrect results for the model.Using adversarial examples to train the model will greatly improve its robustness.The existing method is to use automatic differentials or finite difference to obtain a gradient and use it to construct adversarial examples.This paper proposes an innovative method for constructing adversarial examples of quantum variational circuits.In this method,the gradient can be obtained by measuring the expected value of a quantum bit respectively in a series quantum circuit.This method can be used to construct the adversarial examples for a quantum variational circuit classifier.The implementation results prove the effectiveness of the proposed method.Compared with the existing method,our method requires fewer resources and is more efficient. 展开更多
关键词 quantum variational circuit adversarial examples quantum machine learning quantum circuit
原文传递
Symbolic Reasoning About Quantum Circuits in Coq
14
作者 Wen-Jun Shi Qin-Xiang Cao +2 位作者 Yu-Xin Deng Han-Ru Jiang Yuan Feng 《Journal of Computer Science & Technology》 SCIE EI CSCD 2021年第6期1291-1306,共16页
A quantum circuit is a computational unit that transforms an input quantum state to an output state.A natural way to reason about its behavior is to compute explicitly the unitary matrix implemented by it.However,when... A quantum circuit is a computational unit that transforms an input quantum state to an output state.A natural way to reason about its behavior is to compute explicitly the unitary matrix implemented by it.However,when the number of qubits increases,the matrix dimension grows exponentially and the computation becomes intractable.In this paper,we propose a symbolic approach to reasoning about quantum circuits.It is based on a small set of laws involving some basic manipulations on vectors and matrices.This symbolic reasoning scales better than the explicit one and is well suited to be automated in Coq,as demonstrated with some typical examples. 展开更多
关键词 quantum circuit symbolic reasoning Dirac notation COQ
原文传递
Quantum Circuit Implementation and Resource Evaluation of Ballet‑p/k Under Grover’s Attack
15
作者 HONG Rui-Peng ZHANG Lei +3 位作者 PANG Chen-Xu LI Guo-Yuan DING Ding WANG Jian-Xin 《密码学报(中英文)》 北大核心 2025年第5期1178-1194,共17页
The advent of Grover’s algorithm presents a significant threat to classical block cipher security,spurring research into post-quantum secure cipher design.This study engineers quantum circuit implementations for thre... The advent of Grover’s algorithm presents a significant threat to classical block cipher security,spurring research into post-quantum secure cipher design.This study engineers quantum circuit implementations for three versions of the Ballet family block ciphers.The Ballet‑p/k includes a modular-addition operation uncommon in lightweight block ciphers.Quantum ripple-carry adder is implemented for both“32+32”and“64+64”scale to support this operation.Subsequently,qubits,quantum gates count,and quantum circuit depth of three versions of Ballet algorithm are systematically evaluated under quantum computing model,and key recovery attack circuits are constructed based on Grover’s algorithm against each version.The comprehensive analysis shows:Ballet-128/128 fails to NIST Level 1 security,while when the resource accounting is restricted to the Clifford gates and T gates set for the Ballet-128/256 and Ballet-256/256 quantum circuits,the design attains Level 3. 展开更多
关键词 Grover’s algorithm quantum circuit Ballet family block ciphers quantum ripple-carry adder
在线阅读 下载PDF
Symmetry Breaking Dynamics in Quantum Many-Body Systems
16
作者 Hui Yu Zi-Xiang Li Shi-Xin Zhang 《Chinese Physics Letters》 2025年第11期150-173,共24页
Entanglement asymmetry(EA) has emerged as a powerful tool for characterizing symmetry breaking in quantum many-body systems. In this Letter, we explore how symmetry is dynamically broken through the lens of EA in two ... Entanglement asymmetry(EA) has emerged as a powerful tool for characterizing symmetry breaking in quantum many-body systems. In this Letter, we explore how symmetry is dynamically broken through the lens of EA in two distinct scenarios: a non-symmetric Hamiltonian quench and a non-symmetric random quantum circuit, with a particular focus on U(1) symmetry. In the former case, symmetry remains broken in the subsystem at late times, whereas in the latter case, the symmetry is initially broken and subsequently restored, consistent with the principles of quantum thermalization. Notably, the growth of EA exhibits unexpected overshooting behavior at early times in both contexts, contrasting with the behavior of charge variance. We also consider dynamics of non-symmetric initial states under the symmetry-breaking evolution. Due to the competition of symmetry-breaking in both the initial state and Hamiltonian, the early-time EA can increase and decrease, while quantum Mpemba effects remain evident despite the weak symmetry-breaking in both settings. 展开更多
关键词 entanglement asymmetry quantum circuit symmetry breaking quantum many body systems non symmetric Hamiltonian quench quantum thermalization non symmetric random quantum circuit entanglement asymmetry ea
原文传递
Zuchongzhi-3 Sets New Benchmark with 105-Qubit Superconducting Quantum Processor
17
作者 LIU Danxu GE Shuyun WU Yuyang 《Bulletin of the Chinese Academy of Sciences》 2025年第1期55-56,共2页
A team of researchers from the University of Science and Technology of China(USTC)of the Chinese Academy of Sciences(CAS)and its partners have made significant advancements in random quantum circuit sampling with Zuch... A team of researchers from the University of Science and Technology of China(USTC)of the Chinese Academy of Sciences(CAS)and its partners have made significant advancements in random quantum circuit sampling with Zuchongzhi-3,a superconducting quantum computing prototype featuring 105 qubits and 182 couplers. 展开更多
关键词 quantum circuit sampling superconducting quantum computing prototype zuchongzhi superconducting quantum processor QUBITS COUPLERS
在线阅读 下载PDF
Research on Optimization of Hierarchical Quantum Circuit Scheduling Strategy
18
作者 Ziao Han Hui Li +2 位作者 Kai Lu Shujuan Liu Mingmei Ju 《Computers, Materials & Continua》 2025年第3期5097-5113,共17页
Traditional quantum circuit scheduling approaches underutilize the inherent parallelism of quantum computation in the Noisy Intermediate-Scale Quantum(NISQ)era,overlook the inter-layer operations can be further parall... Traditional quantum circuit scheduling approaches underutilize the inherent parallelism of quantum computation in the Noisy Intermediate-Scale Quantum(NISQ)era,overlook the inter-layer operations can be further parallelized.Based on this,two quantum circuit scheduling optimization approaches are designed and integrated into the quantum circuit compilation process.Firstly,we introduce the Layered Topology Scheduling Approach(LTSA),which employs a greedy algorithm and leverages the principles of topological sorting in graph theory.LTSA allocates quantum gates to a layered structure,maximizing the concurrent execution of quantum gate operations.Secondly,the Layerwise Conflict Resolution Approach(LCRA)is proposed.LCRA focuses on utilizing directly executable quantum gates within layers.Through the insertion of SWAP gates and conflict resolution checks,it minimizes conflicts and enhances parallelism,thereby optimizing the overall computational efficiency.Experimental findings indicate that LTSA and LCRA individually achieve a noteworthy reduction of 51.1%and 53.2%,respectively,in the number of inserted SWAP gates.Additionally,they contribute to a decrease in hardware gate overhead by 14.7%and 15%,respectively.Considering the intricate nature of quantum circuits and the temporal dependencies among different layers,the amalgamation of both approaches leads to a remarkable 51.6%reduction in inserted SWAP gates and a 14.8%decrease in hardware gate overhead.These results underscore the efficacy of the combined LTSA and LCRA in optimizing quantum circuit compilation. 展开更多
关键词 quantum circuit scheduling layered topology scheduling approach(LTSA) layerwise conflict resolu-tion approach(LCRA) quantum computing quantum circuit compilation
在线阅读 下载PDF
Hybrid bidirectional quantum communication with different levels of control with simulation
19
作者 Plaban Saha Manoj Kumar Mandal +1 位作者 Binayak S Choudhury Soumen Samanta 《Communications in Theoretical Physics》 2025年第1期65-91,共27页
In this paper,we develop a quantum communication protocol for the simultaneous preparation of a two-qubit and a three-qubit state at the positions of two different parties situated spatially apart.For one party,Alice,... In this paper,we develop a quantum communication protocol for the simultaneous preparation of a two-qubit and a three-qubit state at the positions of two different parties situated spatially apart.For one party,Alice,it is a remote state preparation of a known two-qubit state while for the other party,Bob,it is a joint remote state preparation with the help of a third party,Eve.The protocol is executed in a hybrid form bi-directionally in the presence of two controllers,Charlie and David.There is a hierarchy in the process through different levels of control under which the actions by Alice and Bob are performed.There is a need for a ten-qubit entangled channel connecting the five parties.The generation of this channel through a circuit is discussed.The protocol is executed on the IBM Quantum platform.We also study the effect of noise on our protocol.Here,amplitude-damping,bit-flip and phase-flip noisy environments are considered and the corresponding variations of fidelity are theoretically and numerically analyzed. 展开更多
关键词 remote state preparation joint remote state preparation HIERARCHY entangled state quantum circuit controlled protocol
原文传递
Distributed quantum circuit partitioning and optimization based on combined spectral clustering and search tree strategies
20
作者 Zilu Chen Zhijin Guan +1 位作者 Shuxian Zhao Xueyun Cheng 《Chinese Physics B》 2025年第5期237-248,共12页
In the current noisy intermediate-scale quantum(NISQ)era,a single quantum processing unit(QPU)is insufficient to implement large-scale quantum algorithms;this has driven extensive research into distributed quantum com... In the current noisy intermediate-scale quantum(NISQ)era,a single quantum processing unit(QPU)is insufficient to implement large-scale quantum algorithms;this has driven extensive research into distributed quantum computing(DQC).DQC involves the cooperative operation of multiple QPUs but is concurrently challenged by excessive communication complexity.To address this issue,this paper proposes a quantum circuit partitioning method based on spectral clustering.The approach transforms quantum circuits into weighted graphs and,through computation of the Laplacian matrix and clustering techniques,identifies candidate partition schemes that minimize the total weight of the cut.Additionally,a global gate search tree strategy is introduced to meticulously explore opportunities for merged transfer of global gates,thereby minimizing the transmission cost of distributed quantum circuits and selecting the optimal partition scheme from the candidates.Finally,the proposed method is evaluated through various comparative experiments.The experimental results demonstrate that spectral clustering-based partitioning exhibits robust stability and efficiency in runtime in quantum circuits of different scales.In experiments involving the quantum Fourier transform algorithm and Revlib quantum circuits,the transmission cost achieved by the global gate search tree strategy is significantly optimized. 展开更多
关键词 NISQ era distributed quantum computing quantum circuit partitioning transmission cost
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部