In this paper, we propose a scheme for implementing the quantum clock synchronization (QCS) algorithm in cavity quantum electrodynamic (QED) formalism. Our method is based on three-level lader-type atoms interacti...In this paper, we propose a scheme for implementing the quantum clock synchronization (QCS) algorithm in cavity quantum electrodynamic (QED) formalism. Our method is based on three-level lader-type atoms interacting with classical and quantized cavity fields. Atom-qubit realizations of three-qubit and four-qubit QCS algorithms are explicitly presented.展开更多
An experimentally feasible protocol for realizing dense coding by using a class of W-state in cavity quantum electrodynamics (QED) is proposed in this paper. The prominent advantage of our scheme is that the success...An experimentally feasible protocol for realizing dense coding by using a class of W-state in cavity quantum electrodynamics (QED) is proposed in this paper. The prominent advantage of our scheme is that the successful probability of the dense coding with a W-class state can reach 1. In addition, the scheme can be implemented by the present cavity QED techniques.展开更多
Recent years, several ways of implementing quantum games in different physical systems have been presented. In this paper, we perform a theoretical analysis of an experimentally feasible way to implement a two player ...Recent years, several ways of implementing quantum games in different physical systems have been presented. In this paper, we perform a theoretical analysis of an experimentally feasible way to implement a two player quantum game in cavity quantum electrodynamic(QED). In the scheme, the atoms interact simultaneously with a highly detuned cavity mode with the assistance of a classical field. So the scheme is insensitive to the influence from the cavity decay and the thermal field, and it does not require the cavity to remain in the vacuum state throughout the procedure.展开更多
Assisted by multipartite entanglement, Quantum information may be split so that the original qubit can be reconstructed if and only if the recipients cooperate. This paper proposes an experimentally feasible scheme fo...Assisted by multipartite entanglement, Quantum information may be split so that the original qubit can be reconstructed if and only if the recipients cooperate. This paper proposes an experimentally feasible scheme for splitting quantum information via W-type entangled states in cavity QED systems, where three-level Rydberg atoms interact with nonresonant cavities. Since W-type states are used as the quantum channel and the cavities are only virtually excited, the scheme is easy to implement and robust against decoherence, and the dependence on the quality factor of the cavities is greatly reduced.展开更多
An experimentally feasible scheme for implementing quantum secret sharing via cavity quantum electrodynamics (QED) is proposed. The scheme requires the large detuning of the cavity field from the atomic transition, ...An experimentally feasible scheme for implementing quantum secret sharing via cavity quantum electrodynamics (QED) is proposed. The scheme requires the large detuning of the cavity field from the atomic transition, the cavity is only virtually excited, thus the requirement on the quality factor of the cavity is greatly loosened.展开更多
We propose an experimentally feasible scheme to implement two-player quantum game in cavity quantum electrodynamics (QED). During the process, the cavity is only virtually excited, thus our scheme is insensitive to ...We propose an experimentally feasible scheme to implement two-player quantum game in cavity quantum electrodynamics (QED). During the process, the cavity is only virtually excited, thus our scheme is insensitive to the cavity field states and cavity decay. The scheme can be realized in the range of current cavity QED techniques.展开更多
An alternative scheme is proposed to transfer quantum states and prepare a quantum network in cavity QED. It is based on the interaction of a two-mode cavity field with a three-level V-type atom. In the scheme, the at...An alternative scheme is proposed to transfer quantum states and prepare a quantum network in cavity QED. It is based on the interaction of a two-mode cavity field with a three-level V-type atom. In the scheme, the atom-cavity field interaction is resonant, thus the time required to complete the quantum state transfer process is greatly shortened, which is very important in view of decoherence. Moreover, the present scheme does not require one mode of the cavities to be initially prepared in one-photon state, thus it is more experimentally feasible than the previous ones.展开更多
The first quantum private comparison(QPC) protocol via cavity quantum electrodynamics(QED) is proposed in this paper by making full use of the evolution law of atom via cavity QED, where the third party(TP) is allowed...The first quantum private comparison(QPC) protocol via cavity quantum electrodynamics(QED) is proposed in this paper by making full use of the evolution law of atom via cavity QED, where the third party(TP) is allowed to misbehave on his own but cannot conspire with either of the two users. The proposed protocol adopts two-atom product states rather than entangled states as the initial quantum resource, and only needs single-atom measurements for two users. Both the unitary operations and the quantum entanglement swapping operation are not necessary for the proposed protocol. The proposed protocol can compare the equality of one bit from each user in each round comparison with one two-atom product state. The proposed protocol can resist both the outside attack and the participant attack.Particularly, it can prevent TP from knowing two users' secrets. Furthermore, the qubit efficiency of the proposed protocol is as high as 50%.展开更多
In this paper, we propose a scheme for implementing quantum game (QG) in cavity quantum electrodynamics(QED). In the scheme, the cavity is only virtually excited and thus the proposal is insensitive to the cavity ...In this paper, we propose a scheme for implementing quantum game (QG) in cavity quantum electrodynamics(QED). In the scheme, the cavity is only virtually excited and thus the proposal is insensitive to the cavity fields states and cavity decay. So our proposal can be experimentally realized in the range of current cavity QED techniques.展开更多
Quantum dense coding (QDC) is a process originally proposed to send two classical bits information from a sender to a receiver by sending only one qubit. Our scheme of QDC is proposed following some ideas on secret ...Quantum dense coding (QDC) is a process originally proposed to send two classical bits information from a sender to a receiver by sending only one qubit. Our scheme of QDC is proposed following some ideas on secret sharing with entanglement in cavity QED. Based on the theory of secret sharing the QDC process can be more secure.展开更多
We propose an experimentally feasible scheme for implementing quantum restoring machine of the optimal universal 1→ 2 quantum cloning machine in the context of cavity QED. In our scheme, two atoms (the clones) simu...We propose an experimentally feasible scheme for implementing quantum restoring machine of the optimal universal 1→ 2 quantum cloning machine in the context of cavity QED. In our scheme, two atoms (the clones) simultaneously interact with a cavity field, and meanwhile they are driven by a classical field. Then an arbitrary unknown input state can be restored in the ancilla by applying appropriate unitary local operation.展开更多
In this paper we propose a scheme for transferring quantum states and preparing quantum networks. Compared with the previous schemes, this scheme is more efficient, since three or four-dimensional quantum states can b...In this paper we propose a scheme for transferring quantum states and preparing quantum networks. Compared with the previous schemes, this scheme is more efficient, since three or four-dimensional quantum states can be transferred with a single step and information interchange of three-dimensional quantum states can be realized, which is a significant improvement. It is based on the resonant interaction of a three-mode cavity field with an atom. As a consequence, the interaction time is shortened greatly. Furthermore, we give some discussions about the feasibility of the scheme.展开更多
An experimentally feasible scheme for implementing four-atom quantum dense coding of an atom-cavity system is proposed. The cavity is only virtually excited and no quantum information will be transferred from the atom...An experimentally feasible scheme for implementing four-atom quantum dense coding of an atom-cavity system is proposed. The cavity is only virtually excited and no quantum information will be transferred from the atoms to the cavity. Thus the scheme is insensitive to cavity decay and the thermal field. In the scheme, Alice can send faithfully 4 bits of classical information to Bob by sending two qubits. Generalized Bell states can be exactly distinguished by detecting the atomic state, and quantum dense coding can be realized in a simple way.展开更多
In the system with superconducting quantum interference devices (SQUID) in cavity, a scheme for constructing two-qubit quantum phase gate via a conventional geometric phase-shift is proposed by using a quantized cav...In the system with superconducting quantum interference devices (SQUID) in cavity, a scheme for constructing two-qubit quantum phase gate via a conventional geometric phase-shift is proposed by using a quantized cavity field and classical microwave pulses. In this scheme, the gate operation is realized in the subspace spanned by the two lower flux states of the SQUID system mud the population operator of the excited state has no effect on it. Thus the effect of decoherence caused from the levels of the SQUID system is possible to minimize. Under cavity decay, our strictly numerical simulation shows that it is also possible to realize the unconventional geometric phase gate. The experimental feasibility is discussed in detail.展开更多
By constructing the recovery operations of the protocol of remote implementation of partially unknownquantum operation of two qubits[An-Min Wang:Phys.Rev.A 74(2006)032317]with two-qubit Cnot gate and singlequbit logic...By constructing the recovery operations of the protocol of remote implementation of partially unknownquantum operation of two qubits[An-Min Wang:Phys.Rev.A 74(2006)032317]with two-qubit Cnot gate and singlequbit logic gates,we present a scheme to implement it in cavity QED.Long-lived Rydberg atoms are used as qubits,and the interaction between the atoms and the field of cavity is a nonresonant one.Finally,we analyze the experimentalfeasibility of this scheme.展开更多
We propose a scheme to implement the n-qubit Deutsch-Jozsa algorithm based on resonant interaction between the atoms and a single-mode cavity. In the scheme, the resonant transitions between two ground states and one ...We propose a scheme to implement the n-qubit Deutsch-Jozsa algorithm based on resonant interaction between the atoms and a single-mode cavity. In the scheme, the resonant transitions between two ground states and one excited state of an atom are changed alternately by adjusting the cavity frequency appropriately, and the operations required to complete the algorithm can be significantly simplified following the increment of the number of qubits. The implementation of the scheme in experiment would show the full power of quantum algorithm and would be significative and important for more complicated quantum algorithm in cavity quantum electrodynamics.展开更多
This paper proposes an experimentally feasible scheme for teleportation of an unknown two-atom entangled state, where a cluster state is used as the quantum channel. This scheme does not need any joint measurement. In...This paper proposes an experimentally feasible scheme for teleportation of an unknown two-atom entangled state, where a cluster state is used as the quantum channel. This scheme does not need any joint measurement. In addition, the successful probability and fidelity of teleportation can both reach 1.0. The current scheme can be realized within the current experimental technology.展开更多
This paper proposes a simple scheme to generate a four-atom entangled cluster state in cavity quantum electrodynamics. With the assistantce of a strong classical field the cavity is only virtually excited and no quant...This paper proposes a simple scheme to generate a four-atom entangled cluster state in cavity quantum electrodynamics. With the assistantce of a strong classical field the cavity is only virtually excited and no quantum information will be transferred from the atoms to the cavity during the preparation for a four-atom entangled cluster state, and thus the scheme is insensitive to the cavity field states and cavity decay. Assuming that deviation of laser intensity is 0.01 and that of simultaneity for the interaction is 0.01, it shows that the fidelity of the resulting four-atom entangled cluster state is about 0.9886. The scheme can also be used to generate a four-ion entangled cluster state in a hot trapped-ion system. Assuming that deviation of laser intensity is 0.01, it shows that the fidelity of the resulting four-ion entangled cluster state is about 0.9990. Experimental feasibility for achieving this scheme is also discussed.展开更多
We propose a scheme for teleporting a two-atom entangled state in cavity quantum electrodynamics (QED), In the scheme, we choose a single Einstein Podolsky Rosen (EPR) pair as the quantmn channel which is shared b...We propose a scheme for teleporting a two-atom entangled state in cavity quantum electrodynamics (QED), In the scheme, we choose a single Einstein Podolsky Rosen (EPR) pair as the quantmn channel which is shared by the sender and the receiver. By using the atom cavity-field interaction and introducing an additional atom, we can teleport the two-atom entangled state successfully with a probability of 1.0. Moreover, we show that the scheme is insensitive to cavity decay and thermal field.展开更多
This paper proposes a scheme where one can realize quantum cloning of an unknown two-atom entangled state with assistance of a state preparer in cavity QED. The first stage of the scheme requires usual teleportation. ...This paper proposes a scheme where one can realize quantum cloning of an unknown two-atom entangled state with assistance of a state preparer in cavity QED. The first stage of the scheme requires usual teleportation. In the second stage of the scheme, with the assistance of the preparer, the perfect copies of an unknown atomic entangled state can be produced.展开更多
文摘In this paper, we propose a scheme for implementing the quantum clock synchronization (QCS) algorithm in cavity quantum electrodynamic (QED) formalism. Our method is based on three-level lader-type atoms interacting with classical and quantized cavity fields. Atom-qubit realizations of three-qubit and four-qubit QCS algorithms are explicitly presented.
基金supported by the National Natural Science Foundation of China (Grant No 10674001)the Program of Education Department of Anhui University of China (Grant No KJ2007A002)the Youth Program of Fuyang Normal College of China (Grant No 2005LQ04)
文摘An experimentally feasible protocol for realizing dense coding by using a class of W-state in cavity quantum electrodynamics (QED) is proposed in this paper. The prominent advantage of our scheme is that the successful probability of the dense coding with a W-class state can reach 1. In addition, the scheme can be implemented by the present cavity QED techniques.
基金supported by the National Natural Science Foundation of China (Grant No 10374025)the Hunan Provincial Natural Science Foundation,China (Grant No 07JJ3013)+2 种基金the Foundation of Hunan Provincial Education Department,China (Grant No 06A038)the Principal Foundation of South China Agricultural University,China (Grant Nos 4900-K07275 and 4900-06168)the Guangdong Provincial Natural Science Foundation,China (Grant No 07300793)
文摘Recent years, several ways of implementing quantum games in different physical systems have been presented. In this paper, we perform a theoretical analysis of an experimentally feasible way to implement a two player quantum game in cavity quantum electrodynamic(QED). In the scheme, the atoms interact simultaneously with a highly detuned cavity mode with the assistance of a classical field. So the scheme is insensitive to the influence from the cavity decay and the thermal field, and it does not require the cavity to remain in the vacuum state throughout the procedure.
基金Project supported by the National Natural Science Foundation of China (Grant No 60677044)the Funds for Introduced Talent of Ocean University of China
文摘Assisted by multipartite entanglement, Quantum information may be split so that the original qubit can be reconstructed if and only if the recipients cooperate. This paper proposes an experimentally feasible scheme for splitting quantum information via W-type entangled states in cavity QED systems, where three-level Rydberg atoms interact with nonresonant cavities. Since W-type states are used as the quantum channel and the cavities are only virtually excited, the scheme is easy to implement and robust against decoherence, and the dependence on the quality factor of the cavities is greatly reduced.
基金Project supported by the Fujian Provincial Natural Science Foundation (Grant No A0410016).
文摘An experimentally feasible scheme for implementing quantum secret sharing via cavity quantum electrodynamics (QED) is proposed. The scheme requires the large detuning of the cavity field from the atomic transition, the cavity is only virtually excited, thus the requirement on the quality factor of the cavity is greatly loosened.
基金The project supported by National Natural Science Foundation of China under Grant No.10374025the Principal Foundation of South China Agricultural University,the Scientific Research Fund of the Education Department of Hunan Province of China under Grant No.06C354Natural Science Foundation of Hunan Province under Grant No.06JJ5015
文摘We propose an experimentally feasible scheme to implement two-player quantum game in cavity quantum electrodynamics (QED). During the process, the cavity is only virtually excited, thus our scheme is insensitive to the cavity field states and cavity decay. The scheme can be realized in the range of current cavity QED techniques.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10225421 and 10674025
文摘An alternative scheme is proposed to transfer quantum states and prepare a quantum network in cavity QED. It is based on the interaction of a two-mode cavity field with a three-level V-type atom. In the scheme, the atom-cavity field interaction is resonant, thus the time required to complete the quantum state transfer process is greatly shortened, which is very important in view of decoherence. Moreover, the present scheme does not require one mode of the cavities to be initially prepared in one-photon state, thus it is more experimentally feasible than the previous ones.
基金Supported by the National Natural Science Foundation of China under Grant No.61402407
文摘The first quantum private comparison(QPC) protocol via cavity quantum electrodynamics(QED) is proposed in this paper by making full use of the evolution law of atom via cavity QED, where the third party(TP) is allowed to misbehave on his own but cannot conspire with either of the two users. The proposed protocol adopts two-atom product states rather than entangled states as the initial quantum resource, and only needs single-atom measurements for two users. Both the unitary operations and the quantum entanglement swapping operation are not necessary for the proposed protocol. The proposed protocol can compare the equality of one bit from each user in each round comparison with one two-atom product state. The proposed protocol can resist both the outside attack and the participant attack.Particularly, it can prevent TP from knowing two users' secrets. Furthermore, the qubit efficiency of the proposed protocol is as high as 50%.
基金supported by the National Natural Science Foundation of China (Grant No 10374025)Hunan Provincial Natural Science Foundation of China (Grant No 07JJ3013)+2 种基金the Foundation of Hunan Provincial Education Department of China (Grant No 06A038)the Principal Foundation of South China Agricultural University (Grant Nos 4900-K07275 and 4900-06168)Guangdong Provincial Natural Science Foundation of China (Grant No 07300793)
文摘In this paper, we propose a scheme for implementing quantum game (QG) in cavity quantum electrodynamics(QED). In the scheme, the cavity is only virtually excited and thus the proposal is insensitive to the cavity fields states and cavity decay. So our proposal can be experimentally realized in the range of current cavity QED techniques.
基金National Natural Science Foundation of China under Grant Nos.60678022 and 10674001the Key Program of the Education Department of Anhui Province under Grant Nos.2006KJ070A and 2006KJ057B+1 种基金the Talent Foundation of Anhui UniversityAnhui Key Laboratory of Information Materials and Devices of Anhui University
文摘Quantum dense coding (QDC) is a process originally proposed to send two classical bits information from a sender to a receiver by sending only one qubit. Our scheme of QDC is proposed following some ideas on secret sharing with entanglement in cavity QED. Based on the theory of secret sharing the QDC process can be more secure.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10574001 and 10674001, the Program of the Education Department of Anhui Province under Grant No. 2004kj029, and the Talent Foundation of Anhui University
文摘We propose an experimentally feasible scheme for implementing quantum restoring machine of the optimal universal 1→ 2 quantum cloning machine in the context of cavity QED. In our scheme, two atoms (the clones) simultaneously interact with a cavity field, and meanwhile they are driven by a classical field. Then an arbitrary unknown input state can be restored in the ancilla by applying appropriate unitary local operation.
基金Supported by the National Natural Science Foundation of China under Grant No.10974028Fujian Provincial Natural Science Foundation of China under Grant No.2009J06002
文摘In this paper we propose a scheme for transferring quantum states and preparing quantum networks. Compared with the previous schemes, this scheme is more efficient, since three or four-dimensional quantum states can be transferred with a single step and information interchange of three-dimensional quantum states can be realized, which is a significant improvement. It is based on the resonant interaction of a three-mode cavity field with an atom. As a consequence, the interaction time is shortened greatly. Furthermore, we give some discussions about the feasibility of the scheme.
基金Project supported by the Postdoctal Foundation of Central South University of China, the Important Program of Hunan Provincial Education Department (Grant No. 06A038)Department of Education of Hunan Province of China (Grant No. 06C080)Hunan Provincial Natural Science Foundation, China (Grant No. 07JJ3013)
文摘An experimentally feasible scheme for implementing four-atom quantum dense coding of an atom-cavity system is proposed. The cavity is only virtually excited and no quantum information will be transferred from the atoms to the cavity. Thus the scheme is insensitive to cavity decay and the thermal field. In the scheme, Alice can send faithfully 4 bits of classical information to Bob by sending two qubits. Generalized Bell states can be exactly distinguished by detecting the atomic state, and quantum dense coding can be realized in a simple way.
基金The project supported by National Fundamental Research Program of China under Grant No.2005CB724508National Natural Science Foundation of China under Grant Nos.60478029,90503010,10634060,and 10575040
文摘In the system with superconducting quantum interference devices (SQUID) in cavity, a scheme for constructing two-qubit quantum phase gate via a conventional geometric phase-shift is proposed by using a quantized cavity field and classical microwave pulses. In this scheme, the gate operation is realized in the subspace spanned by the two lower flux states of the SQUID system mud the population operator of the excited state has no effect on it. Thus the effect of decoherence caused from the levels of the SQUID system is possible to minimize. Under cavity decay, our strictly numerical simulation shows that it is also possible to realize the unconventional geometric phase gate. The experimental feasibility is discussed in detail.
基金supported by the National Fundamental Research Program of China under Grant No.2001CB309310partially by National Natural Science Foundation of China under Grant No.60573008
文摘By constructing the recovery operations of the protocol of remote implementation of partially unknownquantum operation of two qubits[An-Min Wang:Phys.Rev.A 74(2006)032317]with two-qubit Cnot gate and singlequbit logic gates,we present a scheme to implement it in cavity QED.Long-lived Rydberg atoms are used as qubits,and the interaction between the atoms and the field of cavity is a nonresonant one.Finally,we analyze the experimentalfeasibility of this scheme.
基金Project supported by the National Natural Science Foundation of China (Grant No 60667001)
文摘We propose a scheme to implement the n-qubit Deutsch-Jozsa algorithm based on resonant interaction between the atoms and a single-mode cavity. In the scheme, the resonant transitions between two ground states and one excited state of an atom are changed alternately by adjusting the cavity frequency appropriately, and the operations required to complete the algorithm can be significantly simplified following the increment of the number of qubits. The implementation of the scheme in experiment would show the full power of quantum algorithm and would be significative and important for more complicated quantum algorithm in cavity quantum electrodynamics.
基金Project supported by the National Natural Science Foundation of China (Grant No 60678022)the Doctoral Fund of Ministry of Education of China (Grant No 20060357008)+2 种基金the Key Program of the Education Department of Anhui Province, China (Grant No 2006KJ070A)the Program of the Education Department of Anhui Province, China (Grant No 2006KJ057B)the Talent Foundation of Anhui University, China, Anhui Key Laboratory of Information Materials and Devices, China (Anhui University)
文摘This paper proposes an experimentally feasible scheme for teleportation of an unknown two-atom entangled state, where a cluster state is used as the quantum channel. This scheme does not need any joint measurement. In addition, the successful probability and fidelity of teleportation can both reach 1.0. The current scheme can be realized within the current experimental technology.
基金Project supported by the Postdoctal Foundation of Central South University of Chinathe Important Program of Hunan Provincial Education Department of China (Grant No. 06A038)+1 种基金Department of Education of Hunan Province of China (Grant No. 06C080)Hunan Provincial Natural Science Foundation,China (Grant No. 07JJ3013)
文摘This paper proposes a simple scheme to generate a four-atom entangled cluster state in cavity quantum electrodynamics. With the assistantce of a strong classical field the cavity is only virtually excited and no quantum information will be transferred from the atoms to the cavity during the preparation for a four-atom entangled cluster state, and thus the scheme is insensitive to the cavity field states and cavity decay. Assuming that deviation of laser intensity is 0.01 and that of simultaneity for the interaction is 0.01, it shows that the fidelity of the resulting four-atom entangled cluster state is about 0.9886. The scheme can also be used to generate a four-ion entangled cluster state in a hot trapped-ion system. Assuming that deviation of laser intensity is 0.01, it shows that the fidelity of the resulting four-ion entangled cluster state is about 0.9990. Experimental feasibility for achieving this scheme is also discussed.
基金Project supported by the Science Foundation of Yanbian University, China (Grant No 2005-20).
文摘We propose a scheme for teleporting a two-atom entangled state in cavity quantum electrodynamics (QED), In the scheme, we choose a single Einstein Podolsky Rosen (EPR) pair as the quantmn channel which is shared by the sender and the receiver. By using the atom cavity-field interaction and introducing an additional atom, we can teleport the two-atom entangled state successfully with a probability of 1.0. Moreover, we show that the scheme is insensitive to cavity decay and thermal field.
文摘This paper proposes a scheme where one can realize quantum cloning of an unknown two-atom entangled state with assistance of a state preparer in cavity QED. The first stage of the scheme requires usual teleportation. In the second stage of the scheme, with the assistance of the preparer, the perfect copies of an unknown atomic entangled state can be produced.