We present a Quantum Space Model (QSM) of cosmic evolution based on the theory that space consists of energy quanta from which our universe came about. We used the Friedmann equations to trace its history and predict ...We present a Quantum Space Model (QSM) of cosmic evolution based on the theory that space consists of energy quanta from which our universe came about. We used the Friedmann equations to trace its history and predict its ultimate fate. Results provide further support to our recent proposal that the accelerating expansion of the universe is due to a scalar space field which has become known as Dark Energy. In our model, the universe started from high energy space quanta which were triggered by quantum fluctuations that caused the Big Bang. It then expanded and cooled undergoing phase transitions to radiation, fundamental particles, and matter. Matter agglomerated and grew into stars, galaxies, etc. and was eventually consolidated by gravity into Black Holes, which finally ended in a Big Crunch in a state of deep freeze inside the Black hole at 1.380 trillion years. Fluctuations, quantum tunneling, or some other mechanisms caused a new Bang to start another cycle in its life. Our results are in good agreement with the theoretical predictions of a cyclic universe by Steinhardt and his associates, and by Penrose. Space and energy are equivalent as embodied in the Planck energy equation. They give rise to the two principal long range forces in the universe: the gravitational force and the space force. The latter may be the fifth force in the universe. The two forces could provide the clockwork mechanism operating our cyclic universe. If the Law of Conservation of Energy is universal, then the cosmos is eternal.展开更多
Formal state space models of quantum control systems are deduced and a scheme to establish formal state space models via quantization could been obtained for quantum control systems is proposed. State evolution of qua...Formal state space models of quantum control systems are deduced and a scheme to establish formal state space models via quantization could been obtained for quantum control systems is proposed. State evolution of quantum control systems must accord with Schrdinger equations, so it is foremost to obtain Hamiltonian operators of systems. There are corresponding relations between operators of quantum systems and corresponding physical quantities of classical systems, such as momentum, energy and Hamiltonian, so Schrdinger equation models of corresponding quantum control systems via quantization could been obtained from classical control systems, and then establish formal state space models through the suitable transformation from Schrdinger equations for these quantum control systems. This method provides a new kind of path for modeling in quantum control.展开更多
A state space model(SSM) is derived for quantum-dot semiconductor optical amplifiers(QD-SOAs).Rate equations of QD-SOA are formulated in the form of state update equations,where average occupation probabilities along ...A state space model(SSM) is derived for quantum-dot semiconductor optical amplifiers(QD-SOAs).Rate equations of QD-SOA are formulated in the form of state update equations,where average occupation probabilities along QD-SOA cavity are considered as state variables of the system.Simulations show that SSM calculates QD-SOA′s static and dynamic characteristics with high accuracy.展开更多
The concept of Space Charge Capacitance (SCC) is proposed and used to make a novel analytical charge model of quantized inversion layer in MOS structures. Based on SCC, continuous expressions of surface potential and ...The concept of Space Charge Capacitance (SCC) is proposed and used to make a novel analytical charge model of quantized inversion layer in MOS structures. Based on SCC, continuous expressions of surface potential and inversion layer carrier density are derived. Quantum mechanical effects on both inversion layer carrier density and surface potential are extensively included. The accuracy of the model is verified by the numerical solution to Schrodinger and Poisson equation and the model is demonstrated,too.展开更多
We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckion...We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckions. These material particles interact indirectly, and have very strong restoring forces keeping them a finite distance apart from each other within their respective species. Because of their mass compensating effect, the vacuum appears massless, charge-less, without pressure, net energy density or entropy. In addition, we consider two varying G models, where G, is Newton’s constant, and G<sup>-1</sup>, increases with an increase in cosmological time. We argue that there are at least two competing models for the quantum vacuum within such a framework. The first follows a strict extension of Winterberg’s model. This leads to nonsensible results, if G increases, going back in cosmological time, as the length scale inherent in such a model will not scale properly. The second model introduces a different length scale, which does scale properly, but keeps the mass of the Planck particle as, ± the Planck mass. Moreover we establish a connection between ordinary matter, dark matter, and dark energy, where all three mass densities within the Friedman equation must be interpreted as residual vacuum energies, which only surface, once aggregate matter has formed, at relatively low CMB temperatures. The symmetry of the vacuum will be shown to be broken, because of the different scaling laws, beginning with the formation of elementary particles. Much like waves on an ocean where positive and negative planckion mass densities effectively cancel each other out and form a zero vacuum energy density/zero vacuum pressure surface, these positive mass densities are very small perturbations (anomalies) about the mean. This greatly alleviates, i.e., minimizes the cosmological constant problem, a long standing problem associated with the vacuum.展开更多
We present a new interpretation of the Higgs field as a composite particle made up of a positive, with, a negative mass Planck particle. According to the Winterberg hypothesis, space, i.e., the vacuum, consists of bot...We present a new interpretation of the Higgs field as a composite particle made up of a positive, with, a negative mass Planck particle. According to the Winterberg hypothesis, space, i.e., the vacuum, consists of both positive and negative physical massive particles, which he called planckions, interacting through strong superfluid forces. In our composite model for the Higgs boson, there is an intrinsic length scale associated with the vacuum, different from the one introduced by Winterberg, where, when the vacuum is in a perfectly balanced state, the number density of positive Planck particles equals the number density of negative Planck particles. Due to the mass compensating effect, the vacuum thus appears massless, chargeless, without pressure, energy density, or entropy. However, a situation can arise where there is an effective mass density imbalance due to the two species of Planck particle not matching in terms of populations, within their respective excited energy states. This does not require the physical addition or removal of either positive or negative Planck particles, within a given region of space, as originally thought. Ordinary matter, dark matter, and dark energy can thus be given a new interpretation as residual vacuum energies within the context of a greater vacuum, where the populations of the positive and negative energy states exactly balance. In the present epoch, it is estimated that the dark energy number density imbalance amounts to, , per cubic meter, when cosmic distance scales in excess of, 100 Mpc, are considered. Compared to a strictly balanced vacuum, where we estimate that the positive, and the negative Planck number density, is of the order, 7.85E54 particles per cubic meter, the above is a very small perturbation. This slight imbalance, we argue, would dramatically alleviate, if not altogether eliminate, the long standing cosmological constant problem.展开更多
In this paper, a manifestation of the well-known color confinement from the QCD (quantum chromodynamics) in the newly developed YY model for the atomic nucleus is presented. There is a wonderful correspondence between...In this paper, a manifestation of the well-known color confinement from the QCD (quantum chromodynamics) in the newly developed YY model for the atomic nucleus is presented. There is a wonderful correspondence between the structural requirements from the YY model and some elementary properties of the color dynamics from QCD. The open questions in the YY model, namely the holding forces for triple nodes and for pairing space links, are exactly covered by the three-color compensation or by the paired color anti-color balance. We will see what colors and anti-colors do mean in the YY model, how up quarks and down quarks get assigned a color or anti-color. We will discover some relationships between gluon-based interactions as described in the standard model and pairing space links in the YY model.展开更多
We present a model of the universe based on the theory that space consists of energy quanta. We use the thermodynamics of an ideal gas to elucidate the composition, accelerated expansion, and the nature of dark energy...We present a model of the universe based on the theory that space consists of energy quanta. We use the thermodynamics of an ideal gas to elucidate the composition, accelerated expansion, and the nature of dark energy and dark matter without an Inflation stage. From wave-particle duality, the space quanta can be treated as an ideal gas. The universe started from an atomic size volume at very high temperature and pressure. Upon expansion and cooling, phase transitions occurred to form fundamental particles, and matter. These nucleate and grew into stars, galaxies, and clusters due to gravity. From cooling data, a thermodynamic phase diagram of cosmic composition was constructed which yielded a correlation between dark energy and the energy of space. Using Friedmann’s equations, our model fits well the Williamson Microwave Anisotropy Platform (WMAP) data on cosmic composition with an equation of state parameter, <em>w</em> = -0.7. The dominance of dark energy started at 7.25 × 10<sup>9</sup> years, in good agreement with Baryon Oscillation Spectroscopic Survey (BOSS) measurements. The expansion of space can be attributed to a scalar space field. Dark Matter is identified as a plasma form of matter similar to that which existed before recombination and during the reionization epoch. The expansion of the universe was adiabatic and decelerating during the first 7 billion years after the Big Bang;it accelerated thereafter. A negative pressure for Dark Energy is required to sustain it;this is consistent with the theory of General Relativity and energy conservation. We propose a mechanism for the acceleration as due to the consolidation of matter to form Black Holes and other massive compact objects. The resulting reduction in gravitational potential energy feeds back energy for the acceleration. It is not due to a repulsive form of gravity. Our Quantum Space model fits well the observed behavior of the universe and resolves the outstanding questions in Inflationary Big Bang Theory.展开更多
文摘We present a Quantum Space Model (QSM) of cosmic evolution based on the theory that space consists of energy quanta from which our universe came about. We used the Friedmann equations to trace its history and predict its ultimate fate. Results provide further support to our recent proposal that the accelerating expansion of the universe is due to a scalar space field which has become known as Dark Energy. In our model, the universe started from high energy space quanta which were triggered by quantum fluctuations that caused the Big Bang. It then expanded and cooled undergoing phase transitions to radiation, fundamental particles, and matter. Matter agglomerated and grew into stars, galaxies, etc. and was eventually consolidated by gravity into Black Holes, which finally ended in a Big Crunch in a state of deep freeze inside the Black hole at 1.380 trillion years. Fluctuations, quantum tunneling, or some other mechanisms caused a new Bang to start another cycle in its life. Our results are in good agreement with the theoretical predictions of a cyclic universe by Steinhardt and his associates, and by Penrose. Space and energy are equivalent as embodied in the Planck energy equation. They give rise to the two principal long range forces in the universe: the gravitational force and the space force. The latter may be the fifth force in the universe. The two forces could provide the clockwork mechanism operating our cyclic universe. If the Law of Conservation of Energy is universal, then the cosmos is eternal.
文摘Formal state space models of quantum control systems are deduced and a scheme to establish formal state space models via quantization could been obtained for quantum control systems is proposed. State evolution of quantum control systems must accord with Schrdinger equations, so it is foremost to obtain Hamiltonian operators of systems. There are corresponding relations between operators of quantum systems and corresponding physical quantities of classical systems, such as momentum, energy and Hamiltonian, so Schrdinger equation models of corresponding quantum control systems via quantization could been obtained from classical control systems, and then establish formal state space models through the suitable transformation from Schrdinger equations for these quantum control systems. This method provides a new kind of path for modeling in quantum control.
文摘A state space model(SSM) is derived for quantum-dot semiconductor optical amplifiers(QD-SOAs).Rate equations of QD-SOA are formulated in the form of state update equations,where average occupation probabilities along QD-SOA cavity are considered as state variables of the system.Simulations show that SSM calculates QD-SOA′s static and dynamic characteristics with high accuracy.
文摘The concept of Space Charge Capacitance (SCC) is proposed and used to make a novel analytical charge model of quantized inversion layer in MOS structures. Based on SCC, continuous expressions of surface potential and inversion layer carrier density are derived. Quantum mechanical effects on both inversion layer carrier density and surface potential are extensively included. The accuracy of the model is verified by the numerical solution to Schrodinger and Poisson equation and the model is demonstrated,too.
文摘We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckions. These material particles interact indirectly, and have very strong restoring forces keeping them a finite distance apart from each other within their respective species. Because of their mass compensating effect, the vacuum appears massless, charge-less, without pressure, net energy density or entropy. In addition, we consider two varying G models, where G, is Newton’s constant, and G<sup>-1</sup>, increases with an increase in cosmological time. We argue that there are at least two competing models for the quantum vacuum within such a framework. The first follows a strict extension of Winterberg’s model. This leads to nonsensible results, if G increases, going back in cosmological time, as the length scale inherent in such a model will not scale properly. The second model introduces a different length scale, which does scale properly, but keeps the mass of the Planck particle as, ± the Planck mass. Moreover we establish a connection between ordinary matter, dark matter, and dark energy, where all three mass densities within the Friedman equation must be interpreted as residual vacuum energies, which only surface, once aggregate matter has formed, at relatively low CMB temperatures. The symmetry of the vacuum will be shown to be broken, because of the different scaling laws, beginning with the formation of elementary particles. Much like waves on an ocean where positive and negative planckion mass densities effectively cancel each other out and form a zero vacuum energy density/zero vacuum pressure surface, these positive mass densities are very small perturbations (anomalies) about the mean. This greatly alleviates, i.e., minimizes the cosmological constant problem, a long standing problem associated with the vacuum.
文摘We present a new interpretation of the Higgs field as a composite particle made up of a positive, with, a negative mass Planck particle. According to the Winterberg hypothesis, space, i.e., the vacuum, consists of both positive and negative physical massive particles, which he called planckions, interacting through strong superfluid forces. In our composite model for the Higgs boson, there is an intrinsic length scale associated with the vacuum, different from the one introduced by Winterberg, where, when the vacuum is in a perfectly balanced state, the number density of positive Planck particles equals the number density of negative Planck particles. Due to the mass compensating effect, the vacuum thus appears massless, chargeless, without pressure, energy density, or entropy. However, a situation can arise where there is an effective mass density imbalance due to the two species of Planck particle not matching in terms of populations, within their respective excited energy states. This does not require the physical addition or removal of either positive or negative Planck particles, within a given region of space, as originally thought. Ordinary matter, dark matter, and dark energy can thus be given a new interpretation as residual vacuum energies within the context of a greater vacuum, where the populations of the positive and negative energy states exactly balance. In the present epoch, it is estimated that the dark energy number density imbalance amounts to, , per cubic meter, when cosmic distance scales in excess of, 100 Mpc, are considered. Compared to a strictly balanced vacuum, where we estimate that the positive, and the negative Planck number density, is of the order, 7.85E54 particles per cubic meter, the above is a very small perturbation. This slight imbalance, we argue, would dramatically alleviate, if not altogether eliminate, the long standing cosmological constant problem.
文摘In this paper, a manifestation of the well-known color confinement from the QCD (quantum chromodynamics) in the newly developed YY model for the atomic nucleus is presented. There is a wonderful correspondence between the structural requirements from the YY model and some elementary properties of the color dynamics from QCD. The open questions in the YY model, namely the holding forces for triple nodes and for pairing space links, are exactly covered by the three-color compensation or by the paired color anti-color balance. We will see what colors and anti-colors do mean in the YY model, how up quarks and down quarks get assigned a color or anti-color. We will discover some relationships between gluon-based interactions as described in the standard model and pairing space links in the YY model.
文摘We present a model of the universe based on the theory that space consists of energy quanta. We use the thermodynamics of an ideal gas to elucidate the composition, accelerated expansion, and the nature of dark energy and dark matter without an Inflation stage. From wave-particle duality, the space quanta can be treated as an ideal gas. The universe started from an atomic size volume at very high temperature and pressure. Upon expansion and cooling, phase transitions occurred to form fundamental particles, and matter. These nucleate and grew into stars, galaxies, and clusters due to gravity. From cooling data, a thermodynamic phase diagram of cosmic composition was constructed which yielded a correlation between dark energy and the energy of space. Using Friedmann’s equations, our model fits well the Williamson Microwave Anisotropy Platform (WMAP) data on cosmic composition with an equation of state parameter, <em>w</em> = -0.7. The dominance of dark energy started at 7.25 × 10<sup>9</sup> years, in good agreement with Baryon Oscillation Spectroscopic Survey (BOSS) measurements. The expansion of space can be attributed to a scalar space field. Dark Matter is identified as a plasma form of matter similar to that which existed before recombination and during the reionization epoch. The expansion of the universe was adiabatic and decelerating during the first 7 billion years after the Big Bang;it accelerated thereafter. A negative pressure for Dark Energy is required to sustain it;this is consistent with the theory of General Relativity and energy conservation. We propose a mechanism for the acceleration as due to the consolidation of matter to form Black Holes and other massive compact objects. The resulting reduction in gravitational potential energy feeds back energy for the acceleration. It is not due to a repulsive form of gravity. Our Quantum Space model fits well the observed behavior of the universe and resolves the outstanding questions in Inflationary Big Bang Theory.