期刊文献+
共找到217篇文章
< 1 2 11 >
每页显示 20 50 100
An Analytical Model of Drain Current for Ultra-Thin Body and Double-Gate Schottky Source/Drain MOSFETs Accounting for Quantum Effects 被引量:2
1
作者 栾苏珍 刘红侠 +3 位作者 贾仁需 蔡乃琼 王瑾 匡潜玮 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第5期869-874,共6页
A compact drain current including the variation of barrier heights and carrier quantization in ultrathin-body and double-gate Schottky barrier MOSFETs (UTBDG SBFETs) is developed. In this model, Schrodinger's equat... A compact drain current including the variation of barrier heights and carrier quantization in ultrathin-body and double-gate Schottky barrier MOSFETs (UTBDG SBFETs) is developed. In this model, Schrodinger's equation is solved using the triangular potential well approximation. The carrier density thus obtained is included in the space charge density to obtain quantum carrier confinement effects in the modeling of thin-body devices. Due to the quantum effects, the first subband is higher than the conduction band edge, which is equivalent to the band gap widening. Thus, the barrier heights at the source and drain increase and the carrier concentration decreases as the drain current decreases. The drawback of the existing models,which cannot present an accurate prediction of the drain current because they mainly consider the effects of Schottky barrier lowering (SBL) due to image forces,is eliminated. Our research results suggest that for small nonnegative Schottky barrier (SB) heights,even for zero barrier height, the tunneling current also plays a role in the total on-state currents. Verification of the present model was carried out by the device numerical simulator-Silvaco and showed good agreement. 展开更多
关键词 Schottky barrier quantum effects the effective mass electron density
在线阅读 下载PDF
Quantum Effects on Global Structure of Liquid Water
2
作者 林珂 胡乃银 +2 位作者 周晓国 刘世林 罗毅 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第2期127-132,I0003,共7页
The structure difference between light and heavy liquid water has been systematically in- vestigated by high precision Raman spectroscopy over the temperature range of 5-85℃. Distinct difference between the Raman spe... The structure difference between light and heavy liquid water has been systematically in- vestigated by high precision Raman spectroscopy over the temperature range of 5-85℃. Distinct difference between the Raman spectral profiles of two different liquid waters is clearly observed. By analyzing the temperature-dependent Raman spectral contour using global fitting procedure, it is found that the micro-structure of heavy water is more ordered than that of light water at the same temperature, and the structure difference between the light and heavy water decreases with the increase of the temperature. The temperature off- set, an indicator for the structure difference, is determined to vary from 28 ℃ to 18 ℃ for the low-to-high temperature. It indicates that quantum effect is significantly not only at low temperature, but also at room temperature. The interaction energy among water molecules has also been estimated from van't Hoff's relationship. The detailed structural information should help to develop reliable force fields for molecular modeling of liquid water. 展开更多
关键词 Light and heavy water quantum effect Raman spectra STRUCTURE Temperature offset
在线阅读 下载PDF
Non-relativistic Limit of Dirac Equations in Gravitational Field and Quantum Effects of Gravity
3
作者 WU Ning 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第3期452-456,共5页
Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schr... Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schroedinger equation obtained from this non-relativistic limit, we can see that the classical Newtonian gravitational potential appears as a part of the potential in the Schroedinger equation, which can explain the gravitational phase effects found in COW experiments. And because of this Newtonian gravitational potential, a quantum particle in the earth's gravitational field may form a gravitationally bound quantized state, which has already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are studied in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, and radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star. 展开更多
关键词 quantum gravity gauge field quantum effects of gravity
在线阅读 下载PDF
Gedanken Experiment for Delineating the Regime for the Start of Quantum Effects, and Their End, Using Turok’s Perfect Bounce Criteria and Radii of a Bounce Maintaining Quantum Effects, as Delineated by Haggard and Rovelli 被引量:1
4
作者 Andrew Walcott Beckwith 《Journal of High Energy Physics, Gravitation and Cosmology》 2016年第3期287-292,共6页
Haggard and Rovelli delineated an outer radius as to the range of quantum effects, which extends past the Schwartzshield radius. This is defined as 7/3 times the mass of the initial cosmological system. We also have a... Haggard and Rovelli delineated an outer radius as to the range of quantum effects, which extends past the Schwartzshield radius. This is defined as 7/3 times the mass of the initial cosmological system. We also have a range of perturbative effects as delineated by Turok’s article which gives a range of values of for which second order perturbative terms in cosmological evolution may play a role, where we have second order perturbation terms for which . Right afterwards, there are no perturbative behavior and no perturbation if . This is the 2<sup>nd</sup> order term for perturbing term for GW (Gravitational wave) as denoted by , and near the “zero point” of cosmological expansion, and from there we determine the size of the quantum effects, i.e. when they initiate, the relevant initial entropy, so as to determine the radii of initial cosmology, so quantum gravity may initiate its activity, in our toy universe. The criteria of Turok is used to obtain the relevant mass, m, used in the initial radii so that it is 7/3 times the mass of the initial cosmological system. We use the “Criteria of Turok” to delineate the start of quantum gravity effects. Mass m is done via appealing to graviton mass, and that times initial entropy, which is commented upon in Equation (9). 展开更多
关键词 quantum effects Haggard and Rovelli
在线阅读 下载PDF
A New Approach to Energy Integral for Investigation of Dust-Ion Acoustic(DIA)Waves in Multi-Component Plasmas with Quantum Effects in Inertia Less Electrons
5
作者 B.C.Kalita R.Kalita 《Communications in Theoretical Physics》 SCIE CAS CSCD 2015年第6期761-768,共8页
Dust-ion acoustic waves are investigated in this model of plasma consisting of negatively charged dusts, cold ions and inertia less quantum effected electrons with the help of a typical energy integral. In this case, ... Dust-ion acoustic waves are investigated in this model of plasma consisting of negatively charged dusts, cold ions and inertia less quantum effected electrons with the help of a typical energy integral. In this case, a new technique is applied formulating a differential equation to establish the energy integral in case of multi-component plasmas which is not possible in general. Dust-ion acoustic (DIA) compressive and rarefactive, supersonic and subsonic solitons of various amplitudes are established. The consideration of smaller order nonlinearity in support of the newly established quantum plasma model is observed to generate small amplitude solitons at the decrease of Mach number. The growths of soliton amplitudes and potential depths are found more sensitive to the density of quantum electrons. The small density ratio r(= 1 - f) with a little quantized electrons supplemented by the dust charges Zu and the in-deterministic new quantum parameter C2 are found responsible to finally support the generation of small amplitude solitons admissible for the model. 展开更多
关键词 dust-acoustic solitary waves quantum effects
原文传递
Quantum Effects of Mesoscopic Inductance and Capacity Coupling Circuits 被引量:2
6
作者 LIU Jian-Xin AN Zhan-Yuan SONG Yong-Hua 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第6期1126-1130,共5页
Using the quantum theory for a mesoscopic circuit based on the discretenes of electric charges, the finitedifference Schrodinger equation of the non-dlssipative mesoscopic inductance and capacity coupling circuit is a... Using the quantum theory for a mesoscopic circuit based on the discretenes of electric charges, the finitedifference Schrodinger equation of the non-dlssipative mesoscopic inductance and capacity coupling circuit is achieved. The Coulomb blockade effect, which is caused by the discreteness of electric charges, is studied. Appropriately choose the components in the circuits, the finlte-dlfference Schrodinger equation can be divided into two Mathieu equations in representation." With the WKBJ method, the currents quantum fluctuations in the ground states of the two circuits are calculated. The results show that the currents quantum zero-point fluctuations of the two circuits are exist and correlated. 展开更多
关键词 mesoscopic circuit Mathieu equation quantum effect
在线阅读 下载PDF
Atomistic simulations of thermodynamic properties with nuclear quantum effects of liquid gallium from first principles
7
作者 Hongyu Wu Wenliang Shi +5 位作者 Ri He Guoyong Shi Chunxiao Zhang Jinyun Liu Zhicheng Zhong Runwei Li 《Materials Genome Engineering Advances》 2025年第2期97-104,共8页
Determining thermodynamic properties in disordered systems remains a formidable challenge because of the difficulty in incorporating nuclear quantum effects into large-scale and nonperiodic atomic simulations.In this ... Determining thermodynamic properties in disordered systems remains a formidable challenge because of the difficulty in incorporating nuclear quantum effects into large-scale and nonperiodic atomic simulations.In this study,we employ a machine learning deep potential model in conjunction with the quantum thermal bath method,enabling machine learning molecular dynamics to simulate thermodynamic quantities of liquid materials with satisfactory accuracy without significantly increasing computational costs.Using this approach,we accurately calculate the variations in various thermodynamic quantities of liquid metal gallium at temperatures ranging from zero to room temperature.The calculated thermodynamic properties accurately capture the solid-liquid phase transition behavior of gallium,whereas classical molecular dynamics methods fail to reproduce realistic results.Through this approach,we offer a potential method for accurately calculating the thermodynamic properties of liquids and other disordered systems. 展开更多
关键词 liquid metals machine learning molecular dynamics nuclear quantum effects thermodynamic properties
在线阅读 下载PDF
Beyond Classical Limits:Quantum Superposition and Inner Friction in a Quantum Mechanical Engine
8
作者 Dehua Liu Yingying Hong Jianhui Wang 《Chinese Physics Letters》 2025年第8期1-14,共14页
We propose a quantum Otto engine operating through a cycle of two isochoric processes,where the working substance interacts with a single-mode radiation field,and two unitary strokes,during which the working substance... We propose a quantum Otto engine operating through a cycle of two isochoric processes,where the working substance interacts with a single-mode radiation field,and two unitary strokes,during which the working substance is decoupled from the field.We investigate the influence of quantum superposition and quantum internal friction on the engine's power output and efficiency,demonstrating that these quantum effects enhance both performance metrics.While these enhancements are accompanied by increased power fluctuations,we show that such fluctuations can be effectively mitigated through careful selection of control parameters.Our results reveal that the proposed quantum Otto engine can achieve performance regimes that are thermally inconceivable in classical systems,including surpassing the Otto efficiency limit and attaining 100%efficiency with nonzero power output. 展开更多
关键词 quantum effects unitary strokesduring quantum otto engine power fluctua quantum internal friction quantum superposition isochoric processeswhere
原文传递
Size matters:quantum confinement-driven dynamics in CsPbI_(3)quantum dot light-emitting diodes 被引量:1
9
作者 Shuo Li Wenxu Yin +1 位作者 Weitao Zheng Xiaoyu Zhang 《Journal of Semiconductors》 2025年第4期55-61,共7页
The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investiga... The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices. 展开更多
关键词 quantum confinement effect CsPbI_(3) quantum dot light-emitting diode
在线阅读 下载PDF
Interfacial design and thermoelectric properties of C_(3)N_(4)-C_(20) molecular junctions based on quantum interference
10
作者 Shutao Hu Meng Qian +1 位作者 Gang Zhang Bei Zhang 《Chinese Physics B》 2025年第6期109-115,共7页
Quantum interference effect serves as a critical strategy for addressing incorrect energy level alignment between frontier molecular orbitals and electrodes in molecular junctions. Weak-coupling structures offer an ef... Quantum interference effect serves as a critical strategy for addressing incorrect energy level alignment between frontier molecular orbitals and electrodes in molecular junctions. Weak-coupling structures offer an effective approach to suppress phonon thermal conductance. The thermoelectric properties of pure C_(3)N_(4) nanoribbon devices and C_(3)N_(4)-C_(20) molecular junctions are systematically investigated based on density functional theory(DFT) combined with nonequilibrium Green's function(NEGF) formalism. The results show that pure C_(3)N_(4) nanoribbon devices have superior charge transport capabilities and excellent Seebeck coefficients. A remarkable thermoelectric figure of merit(ZT = 0.98)is achieved near 0.09 e V. The pronounced scattering effect induced by embedding a C_(20) molecule in the center of the C_(3)N_(4) nanoribbon significantly suppresses phonon transport. A maximum ZT value of 1.68 is observed at 0.987 e V. The electron mobility of C_(3)N_(4)-C_(20)-par is effectively increased due to quantum interference effect which greatly improves the alignment between the C_(20) molecule's frontier orbital energy level and C_(3)N_(4) electrodes. The C_(3)N_(4)-C_(20)-van der Waals(vd W) molecular junction allows very few phonons to pass through the C_(20) molecule from the left electrode to the right electrode. As a result, the C_(3)N_(4)-C_(20)-vd W junction achieves an excellent ZT value of 3.82 near the Femi level. 展开更多
关键词 quantum interference effect C_(3)N_(4)-C_(20)molecular junctions thermoelectric properties first-principles theory
原文传递
Quantum anomalous Hall effect in twisted bilayer graphene
11
作者 Wen-Xiao Wang Yi-Wen Liu Lin He 《Chinese Physics B》 2025年第4期2-10,共9页
Recent advancements in two-dimensional van der Waals moir´e materials have unveiled the captivating landscape of moir´e physics.In twisted bilayer graphene(TBG)at‘magic angles’,strong electronic correlatio... Recent advancements in two-dimensional van der Waals moir´e materials have unveiled the captivating landscape of moir´e physics.In twisted bilayer graphene(TBG)at‘magic angles’,strong electronic correlations give rise to a diverse array of exotic physical phenomena,including correlated insulating states,superconductivity,magnetism,topological phases,and the quantum anomalous Hall(QAH)effect.Notably,the QAH effect demonstrates substantial promise for applications in electronic and quantum computing devices with low power consumption.This article focuses on the latest developments surrounding the QAH effect in magic-angle TBG.It provides a comprehensive analysis of magnetism and topology—two crucial factors in engineering the QAH effect within magic-angle TBG.Additionally,it offers a detailed overview of the experimental realization of the QAH effect in moir´e superlattices.Furthermore,this review highlights the underlying mechanisms driving these exotic phases in moir´e materials,contributing to a deeper understanding of strongly interacting quantum systems and facilitating the manipulation of new material properties to achieve novel quantum states. 展开更多
关键词 quantum anomalous Hall effect magic-angle twisted bilayer graphene moirésuperlattices
原文传递
Boltzmann Equations with Quantum Effects (2): Entropy Identity, Existence and Uniqueness of Spatial Decay Solutions
12
作者 张英魁 卢旭光 《Tsinghua Science and Technology》 SCIE EI CAS 2002年第3期219-222,共4页
A previous study is continued by investigating the Boltzmann equation for particles with quantum effects (BQE). First, the corresponding entropy identity is proved, then if the initial data f(x,v,0) satisfies 0... A previous study is continued by investigating the Boltzmann equation for particles with quantum effects (BQE). First, the corresponding entropy identity is proved, then if the initial data f(x,v,0) satisfies 0≤f(x,v,0)≤CΦ(x,v,0) for a constant 0<C<∞ and function Φ(x,v,t), we prove the existence and uniqueness of spatial decay solutions of the BQE within a given function space B(Φ) using fixed point theory. Moreover, if there is a continuous function F(x,v) which belongs to a function set, then there exists a mild solution f(x,v,t) of the BQE such that f ∞(x,v)= limt→∞f(x+vt,v,t)=F(x,v). 展开更多
关键词 Boltzmann equation quantum effects EXISTENCE UNIQUENESS entropy identity spatial decay
原文传递
Quantum gravity effects on spectroscopy of Kerr-Newman black hole in gravity's rainbow
13
作者 Cheng-Zhou Liu Jin-Jun Tao 《Communications in Theoretical Physics》 SCIE CAS CSCD 2022年第2期90-98,共9页
The effects of quantum gravity on spectroscopy for the charged rotating gravity’s rainbow are investigated in this paper.By utilizing an action invariant obtained from particles tunneling through the event horizon,th... The effects of quantum gravity on spectroscopy for the charged rotating gravity’s rainbow are investigated in this paper.By utilizing an action invariant obtained from particles tunneling through the event horizon,the entropy and area spectrum for the modified Kerr-Newman black hole are derived.The equally spaced entropy spectrum characteristic of Bekenstein’s original derivation is recovered.And,the entropy spectrum is independent of the energy of the test particles,although the gravity’s rainbow itself is the energy dependent.Such that,the quantum gravity effects of gravity’s rainbow has no influence on the entropy spectrum.On the other hand,due to the spacetime quantum effects,the obtained area spectrum is different from the original Bekenstein spectrum.It is not equidistant and is dependent on the horizon area.And that,by analyzing the area spectrum from a specific rainbow function,a minimum area with a Planck scale is derived for the event horizon.At this point,the area quantum is zero and the black hole radiation stops.Thus,the black hole remnant for the gravity’s rainbow is obtained from the area quantization.In addition,the entropy for the modified Kerr-Newman black hole is calculated and the quantum correction to the area law is obtained and discussed. 展开更多
关键词 black hole SPECTROSCOPY gravity’s rainbow quantum effects
原文传递
Boltzmann Equations with Quantum Effects (1):Long Time Behavior of Spatial Decay Solutions
14
作者 张英魁 卢旭光 《Tsinghua Science and Technology》 SCIE EI CAS 2002年第3期215-218,共4页
The Boltzmann equations for Fermi-Dirac particles and Bose-Einstein particles, both in the absence of external force fields, are combined into a more general form called the Boltzmann equation with quantum effects (BQ... The Boltzmann equations for Fermi-Dirac particles and Bose-Einstein particles, both in the absence of external force fields, are combined into a more general form called the Boltzmann equation with quantum effects (BQE). It is assumed that the initial data f(x,v,0) satisfies 0≤f(x,v,0)≤cΦ(x,v,0) for a positive constant c and certain types of control functions Φ(x,v,t). Then within a given function space B(Φ), we prove that f(x+tv,v,t) uniformly converges to f ∞(x,v) in a certain norm where f ∞(x,v)= limt→∞f(x+tv,v,t) and different initial data determines different long time limits. 展开更多
关键词 Boltzmann equation quantum effects spatial decay solution long time behavior
原文传递
Influences of Quantum and Disorder Effects on Solitons Excited in Protein Molecules in Improved Model 被引量:1
15
作者 PANGXiao-Feng YUJia-Feng LUOYu-Hui 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第2期367-376,共10页
Utilizing the improved model with quasi-coherent two-quantum state and new Hamiltonian containing an additional interaction term [Phys. Rev. E62 (2000) 6989 and Euro. Phys. J. B19 (2001) 297] we study numerically the ... Utilizing the improved model with quasi-coherent two-quantum state and new Hamiltonian containing an additional interaction term [Phys. Rev. E62 (2000) 6989 and Euro. Phys. J. B19 (2001) 297] we study numerically the influences of the quantum and disorder effects including distortion of the sequences of masses of amino acid molecules and fluctuations of force constant of molecular chains, and of exciton-phonon coupled constants and of the dipole-dipole interaction constant and of the ground state energy on the properties of the solitons transported the bio-energy in the protein molecules by Runge-Kutta method. The results obtained show that the new soliton is robust against these structure disorders, especially for stronger disorders in the sequence of masses spring constants and coupling constants,except for quite larger fluctuations of the ground state energy and dipole-dipole interaction constant. This means that the new soliton in the improved model is very stable in normal cases and is possibly a carrier of bio-energy transport in the protein molecules. 展开更多
关键词 bio-energy transport protein SOLITON quantum effect disorder effect numerical simulation
在线阅读 下载PDF
Temperature and hydrogen-like impurity effects on the excited state of the strong coupling bound polaron in a CsI quantum pseudodot 被引量:2
16
作者 Jing-Lin Xiao 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期399-402,共4页
With hydrogen-like impurity(HLI) located in the center of Cs I quantum pseudodot(QPD) and by using the variational method of Pekar type(VMPT), we investigate the first-excited state energy(FESE), excitation en... With hydrogen-like impurity(HLI) located in the center of Cs I quantum pseudodot(QPD) and by using the variational method of Pekar type(VMPT), we investigate the first-excited state energy(FESE), excitation energy and transition frequency of the strongly-coupled bound polaron in the present paper. Temperature effects on bound polaron properties are calculated by employing the quantum statistical theory(QST). According to the present work's numerical results, the FESE, excitation energy and transition frequency decay(amplify) with raising temperature in the regime of lower(higher)temperature. They are decreasing functions of Coulomb impurity potential strength. 展开更多
关键词 temperature effect bound polaron CsI quantum pseudodot quantum statistical theory excited state
原文传递
Testing the quantum effects near the event horizon with respect to the black hole shadow
17
作者 Zhaoyi Xu Meirong Tang 《Chinese Physics C》 SCIE CAS CSCD 2022年第8期220-229,共10页
In recent years,the study of quantum effects near the event horizon of a black hole(BH)has attracted extensive attention.It has become one of the important methods to explore BH quantum properties using the related pr... In recent years,the study of quantum effects near the event horizon of a black hole(BH)has attracted extensive attention.It has become one of the important methods to explore BH quantum properties using the related properties of a quantum deformed BH.In this work,we study the effect of a quantum deformed BH on the BH shadow in two-dimensional Dilaton gravity.In this model,quantum effects are reflected by the quantum correction parameter m.By calculation,we find that:(1)the shape of the shadow boundary of a rotating BH is determined by the BH spin a,the quantum correction parameter m,and the BH type parameter n;(2)when the spin a=0,the shape of the BH shadow is a perfect circle;when a≠0,the shape is distorted;if the quantum correction parameter m=0,their shapes reduce to the cases of a Schwarzschild BH and Kerr BH,respectively;(3)the degree of distortion of the BH shadow is different for various quantum correction parameters m;with an increase in the parameter m,the boundary of the BH shadow expands;(4)the size of the BH shadow varies greatly with respect to various quantum deformed BHs(n),and the change in BH shadow shape caused by parameter n is similar to that caused by parameter m,which indicates that there is a"degenerate phenomenon"between the two parameters.Because the value of m in actual physics should be very small,the current observations of the event horizon telescope(EHT)cannot distinguish quantum effects from the BH shadow.In future BH shadow measurements,it will be possible to distinguish quantum deformed BHs,which will help to better understand the quantum effects of BHs. 展开更多
关键词 BH shadow quantum deformed BHs quantum effect event horizon telescope
原文传递
Maximum Momentum,Minimal Length and Quantum Gravity Effects of Compact Star Cores
18
作者 张修明 付伟 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第1期14-18,共5页
Based on the generalized uncertainty principle with maximum momentum arid minimal length, we discuss the equation of state of ideal ultra-relativistic Fermi gases at zero temperature. Maximum momentum avoids the probl... Based on the generalized uncertainty principle with maximum momentum arid minimal length, we discuss the equation of state of ideal ultra-relativistic Fermi gases at zero temperature. Maximum momentum avoids the problem that the Fermi degenerate pressure blows up since the increase of the Fermi energy is not limited. Applying this equation of state to the Tolman-Oppenheimer Volkoff (TOV) equation, the quantum gravitational effects on the cores of compact stars are discussed. In the center of compact stars, we obtain the singularity-free solution of the metric component, gtt ~-(1 + 0.2185×r^2). By numerically solving the TOV equation, we find that quantum gravity plays an important role in the region r~10^4α0(△x)min. Current observed masses of neutron stars indicate that the dimensionless parameter α0 cannot exceed 10^19. 展开更多
关键词 of on it Maximum Momentum Minimal Length and quantum Gravity effects of Compact Star Cores in that is
原文传递
Collective excitations and quantum size effects on the surfaces of Pb(111)films:An experimental study
19
作者 Yade Wang Zijian Lin +4 位作者 Siwei Xue Jiade Li Yi Li Xuetao Zhu Jiandong Guo 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第7期74-82,共9页
Pb(111)film is a special system that exhibits strong quantum size effects in many electronic properties.The collective excitations,i.e.,plasmons,in Pb(111)films are also expected to show signatures of the quantum size... Pb(111)film is a special system that exhibits strong quantum size effects in many electronic properties.The collective excitations,i.e.,plasmons,in Pb(111)films are also expected to show signatures of the quantum size effect.Here,using high-resolution electron energy loss spectroscopy,we measured the plasmons on the surface of Pb(111)films with different film thicknesses and analyzed the plasmon dispersions.One surface plasmon branch exhibits prominent damping in the small momentum range,which can be attributed to the interaction between the top and bottom interfaces of the Pb(111)films.With the film thickness increasing,the critical momentum characterizing the damping in Pb(111)films decays not only much slower in Pb(111)films than in other metal films,and even in films with the thickness up to 40 monolayers the damping still exists.The slow decay of the surface plasmon damping,manifesting the strong quantum size effect in Pb(111)films,might be related to the strong nesting of the Fermi surface along the(111)direction. 展开更多
关键词 Pb films PLASMONS quantum size effects high-resolution electron energy loss spectroscopy
原文传递
Quantum spin Hall and quantum valley Hall effects in trilayer graphene and their topological structures
20
作者 Majeed Ur Rehman A A Abid 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第12期481-490,共10页
The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number Cs for energy-bands of trilayer graphene having the essenc... The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number Cs for energy-bands of trilayer graphene having the essence of intrinsic spin-orbit coupling is analytically calculated. We find that for each valley and spin, Cs is three times larger in trilayer graphene as compared to single layer graphene. Since the spin Chern-number corresponds to the number of edge states, consequently the trilayer graphene has edge states, three times more in comparison to single layer graphene. We also study the trilayer graphene in the presence of both electric-field and intrinsic spin-orbit coupling and investigate that the trilayer graphene goes through a phase transition from a quantum spin Hall state to a quantum valley Hall state when the strength of the electric field exceeds the intrinsic spin coupling strength. The robustness of the associated topological bulk-state of the trilayer graphene is evaluated by adding various perturbations such as Rashba spin-orbit (RSO) interaction αR, and exchange-magnetization M. In addition, we consider a theoretical model, where only one of the outer layers in trilayer graphene has the essence of intrinsic spin-orbit coupling, while the other two layers have zero intrinsic spin-orbit coupling. Although the first Chern number is non-zero for individual valleys of trilayer graphene in this model, however, we find that the system cannot be regarded as a topological insulator because the system as a whole is not gaped. 展开更多
关键词 trilayer graphene quantum spin Hall effect topological insulator quantum phase transition
原文传递
上一页 1 2 11 下一页 到第
使用帮助 返回顶部