In order to solve the fault tolerance and reliability problems of quantum circuit, a series of structural equivalence rules and optimization operation strategies of quantum circuit are proposed to minimize the number ...In order to solve the fault tolerance and reliability problems of quantum circuit, a series of structural equivalence rules and optimization operation strategies of quantum circuit are proposed to minimize the number of T gates, increase T gate depth, minimize circuit level, reduce fault tolerance implementation costs and increase circuit reliability. In order to satisfy the nearest neighbor constraints of some quantum systems, a LNN (linear nearest neighbor) arrangement algorithm based on Clifford + T gate quantum circuit is presented. Experiments are done on some benchmarks of RevLib, the results show that the optimization rate of most functions and the running time of the algorithm are better than those of the existing literature.展开更多
The recently observed gravitational wave background is explained in terms of the quantum modification of the general relativity (Qmoger). Some UFO, FRB and supernova flares also can be explained in terms of Qmoger.
量子全加器是量子计算机的基本单元,为了减少能耗,降低构造成本及物理实现难度,本文提出一种新型 n 位量子全加器,使用 3n 个CNOT(Controlled NOT)门和 2n -1个Toffoli门实现 n 位量子加减法,采用超前进位方式,不含进位输入,通过最高溢...量子全加器是量子计算机的基本单元,为了减少能耗,降低构造成本及物理实现难度,本文提出一种新型 n 位量子全加器,使用 3n 个CNOT(Controlled NOT)门和 2n -1个Toffoli门实现 n 位量子加减法,采用超前进位方式,不含进位输入,通过最高溢出标志位判断加法的进位和减法的正负号,标志位不参与高低位计算,不增加电路延时,适合 n 位量子并行计算.随机生成4、8、16和32位数分别进行加减仿真操作,验证了全加器的正确性.该全加器量子代价较低,结构简单,有利于提高集成电路规模和集成度.展开更多
文摘In order to solve the fault tolerance and reliability problems of quantum circuit, a series of structural equivalence rules and optimization operation strategies of quantum circuit are proposed to minimize the number of T gates, increase T gate depth, minimize circuit level, reduce fault tolerance implementation costs and increase circuit reliability. In order to satisfy the nearest neighbor constraints of some quantum systems, a LNN (linear nearest neighbor) arrangement algorithm based on Clifford + T gate quantum circuit is presented. Experiments are done on some benchmarks of RevLib, the results show that the optimization rate of most functions and the running time of the algorithm are better than those of the existing literature.
文摘The recently observed gravitational wave background is explained in terms of the quantum modification of the general relativity (Qmoger). Some UFO, FRB and supernova flares also can be explained in terms of Qmoger.
文摘量子全加器是量子计算机的基本单元,为了减少能耗,降低构造成本及物理实现难度,本文提出一种新型 n 位量子全加器,使用 3n 个CNOT(Controlled NOT)门和 2n -1个Toffoli门实现 n 位量子加减法,采用超前进位方式,不含进位输入,通过最高溢出标志位判断加法的进位和减法的正负号,标志位不参与高低位计算,不增加电路延时,适合 n 位量子并行计算.随机生成4、8、16和32位数分别进行加减仿真操作,验证了全加器的正确性.该全加器量子代价较低,结构简单,有利于提高集成电路规模和集成度.
基金supported by the National Natural Science Foundation of China(11074002)the Doctor Scientific Research Fund of Anhui University(33190058)+1 种基金the Open Fund of Advanced Energy Material Chemistry of Ministry Education of China(KLAEMC-OP201201)the fund of the Education Department of Anhui Province for Outstanding Youth(2012SQRL023)