Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yiel...Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs.展开更多
Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum...Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.展开更多
The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investiga...The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices.展开更多
Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order mo...Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order modes.A structure of mini-array is adopted to improve the heat dissipation capacity and beam quality of BA QCLs.The active region is etched to form a multi-emitter and the channels are filled with In P:Fe,which acts as a lateral heat dissipation channel to improve the lateral heat dissipation efficiency.A device withλ~4.8μm,a peak output power of 122 W at 1.2%duty cycle with a pulse of 1.5μs is obtained in room temperature,with far-field single-lobed distribution.This result allows BA QCLs to obtain high peak power at wider pump pulse widths and higher duty cycle conditions,promotes the application of the mid-infrared laser operating in pulsed mode in th e field of standoff photoacoustic chemical detection,space optical communication,and so on.展开更多
Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-po...Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices.展开更多
With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ...With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers.展开更多
ı-quantum groups,arising from quantum symmetric pairs,are coideal subalgebras of quantum groups.ı-quantum groups are a vast generalization of quantum groups,as quantum groups can be viewed asıquantum groups of diagona...ı-quantum groups,arising from quantum symmetric pairs,are coideal subalgebras of quantum groups.ı-quantum groups are a vast generalization of quantum groups,as quantum groups can be viewed asıquantum groups of diagonal type.Recently,the braid group symmetries and Drinfeld new presentations of quantum groups have been generalized to affineı-quantum groups.In this paper,we construct PBW type bases for splitı-quantum groups of type ADE,based on their braid group symmetries and Drinfeld new presentations.This can be viewed as anı-analogue of the PBW-basis for affine quantum groups,and it generalizes the PBW-basis ofı-quantum groups of finite type.展开更多
The no-cloning theorem has sparked considerable interest in achieving high-fidelity approximate quantum cloning.Most of the previous studies mainly focused on the cloning of single particle states,and cloning schemes ...The no-cloning theorem has sparked considerable interest in achieving high-fidelity approximate quantum cloning.Most of the previous studies mainly focused on the cloning of single particle states,and cloning schemes used there are incapable of cloning quantum entangled states in multipartite systems.Few schemes were proposed for cloning multiparticle states,which consume more entanglement resources with loss of qubits,and the fidelity of the cloned state is relatively low.In this paper,cloning schemes for bipartite and tripartite entangled states based on photonic quantum walk and entanglement swapping are proposed.The results show that according to the proposed schemes,two high-fidelity(up to 0.75)cloned states can be obtained with less quantum resource consumption.Because of the simple cloning steps,few quantum resources and high fidelity,these schemes are both efficient and feasible.Moreover,this cloning machine eliminates the need for tracing out cloning machine,thereby minimizing resource waste.展开更多
Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachm...Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.展开更多
The advent of Grover’s algorithm presents a significant threat to classical block cipher security,spurring research into post-quantum secure cipher design.This study engineers quantum circuit implementations for thre...The advent of Grover’s algorithm presents a significant threat to classical block cipher security,spurring research into post-quantum secure cipher design.This study engineers quantum circuit implementations for three versions of the Ballet family block ciphers.The Ballet‑p/k includes a modular-addition operation uncommon in lightweight block ciphers.Quantum ripple-carry adder is implemented for both“32+32”and“64+64”scale to support this operation.Subsequently,qubits,quantum gates count,and quantum circuit depth of three versions of Ballet algorithm are systematically evaluated under quantum computing model,and key recovery attack circuits are constructed based on Grover’s algorithm against each version.The comprehensive analysis shows:Ballet-128/128 fails to NIST Level 1 security,while when the resource accounting is restricted to the Clifford gates and T gates set for the Ballet-128/256 and Ballet-256/256 quantum circuits,the design attains Level 3.展开更多
Quantum computing offers unprecedented computational power, enabling simultaneous computations beyond traditional computers. Quantum computers differ significantly from classical computers, necessitating a distinct ap...Quantum computing offers unprecedented computational power, enabling simultaneous computations beyond traditional computers. Quantum computers differ significantly from classical computers, necessitating a distinct approach to algorithm design, which involves taming quantum mechanical phenomena. This paper extends the numbering of computable programs to be applied in the quantum computing context. Numbering computable programs is a theoretical computer science concept that assigns unique numbers to individual programs or algorithms. Common methods include Gödel numbering which encodes programs as strings of symbols or characters, often used in formal systems and mathematical logic. Based on the proposed numbering approach, this paper presents a mechanism to explore the set of possible quantum algorithms. The proposed approach is able to construct useful circuits such as Quantum Key Distribution BB84 protocol, which enables sender and receiver to establish a secure cryptographic key via a quantum channel. The proposed approach facilitates the process of exploring and constructing quantum algorithms.展开更多
Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective al...Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective alternative to traditional infrared detector technology.Recently,thanks to the solution processing properties of quantum dots and their ability to integrate with silicon-based readout circuits on a single chip,infrared detectors based on HgTe CQDs have shown great application prospects.However,facing the challenges of vertically stacked photovoltaic devices,such as barrier layer matching and film non-uniformity,most devices integrated with readout circuits still use a planar structure,which limits the efficiency of light absorption and the effective separation and collection of photo-generated carriers.Here,by synthesizing high-quality HgTe CQDs and precisely controlling the interface quality,we have successfully fabricated a photovoltaic detector based on HgTe and ZnO QDs.At a working temperature of 80 K,this detector achieved a low dark current of 5.23×10^(-9)A cm^(-2),a high rectification ratio,and satisfactory detection sensitivity.This work paves a new way for the vertical integration of HgTe CQDs on silicon-based readout circuits,demonstrating their great potential in the field of high-performance infrared detection.展开更多
In this second part of a study about quantum field oscillators with sub-oscillators and semi-quanta (IQuO), it is possible to show that in the initial phase of an interaction between two particles a no-dynamic process...In this second part of a study about quantum field oscillators with sub-oscillators and semi-quanta (IQuO), it is possible to show that in the initial phase of an interaction between two particles a no-dynamic process of reduction from a non-local to a local state takes place which cannot be described by Hamiltonian. We then describe the coupling of two IQuO of different particle-fields either at one point in space or at two distant points via an intermediary chain of coupled IQuO. The first aspect provides an understanding of the basic processes of creating and annihilating a pair. The second aspect describes the behaviour of two electrically charged particles through a process of phase shifts between the respective IQuO chains (CF1, CF2) implemented in a quantum entanglement via an intermediary chain (CB) of IQuO that originates changes in the direction of the two (CF1, CF2) distance-correlated ones. Thus, the semi-quanta structure of an IQuO and quantum entanglement identify the origin of the empirical law of attraction and repulsion between two electric charges.展开更多
In the process of power scaling large-area Quantum Cascade Lasers(QCLs),challenges such as degradation of beam quality and emission of multilobed far-field modes are frequently encountered.These issues become particul...In the process of power scaling large-area Quantum Cascade Lasers(QCLs),challenges such as degradation of beam quality and emission of multilobed far-field modes are frequently encountered.These issues become particularly pronounced with an increase in ridge width,resulting in multimode problems.To tackle this,an innovative multi ridge waveguide structure based on the principle of supersymmetry(SUSY)was proposed.This structure comprises a wider main waveguide in the center and two narrower auxiliary waveguides on either side.The high-order modes of the main waveguide are coupled with the modes of the auxiliary waveguides through mode-matching design,and the optical loss of the auxiliary waveguides suppresses these modes,thereby achieving fundamental mode lasing of the wider main waveguide.This paper employs the finite difference eigenmode(FDE)method to perform detailed structural modeling and simulation optimization of the 4.6μm wavelength quantum cascade laser,successfully achieving a single transverse mode QCL with a ridge width of 10μm.In comparison to the traditional single-mode QCL(with a ridge width of about 5μm),the MRW structure has the potential to increase the gain area of the laser by 100%.This offers a novel design concept and methodology for enhancing the single-mode luminous power of mid-infrared quantum cascade lasers,which is of considerable significance.展开更多
Quantum entanglement is a bizarre, counterintuitive phenomenon which shows that entangled subatomic particles remain related even when they are far apart, which was described by Einstein as “spooky action at a dista...Quantum entanglement is a bizarre, counterintuitive phenomenon which shows that entangled subatomic particles remain related even when they are far apart, which was described by Einstein as “spooky action at a distance”. Although this phenomenon could be interpreted by a few theories, for example, the famous Copenhagen interpretation which describes that these states exist simultaneously by a wave function, however, there is still no unquestioned theory and it continues to puzzle people around the world. Here we propose a hypothesis that gravity cuts out stop functioning between subatomic particles based on the observations of a thought experiment. It is well known that the Universe is filled with various subatomic particles (e.g. cosmic neutrino background, CνB) and gravity is a universal force making any particle in the Universe attract any other. Based on these observations, it is expected that the CνB particles walking abreast will be combined together by their gravity after some time/distance, which will thus result in a greatly uneven distribution of CνB. However, the observational evidence showed that CνB is highly isotropic and homogenous, suggesting that gravity would no longer work at the subatomic scale. Thus, the relation of the paired subatomic particles would become some pure correlation of mass (or equivalent energy) status. In this case, time would be not required anymore due to the ineffectiveness of gravity. The proposed new interpretation matches the experimental observations well and finally possible thought experiments are presented to test this theory.展开更多
Ischemia is a significant factor affecting the repair of peripheral nerve injuries,while exosomes have been shown to promote angiogenesis.To further investigate the detailed processes and efficacy of exosome thera⁃py ...Ischemia is a significant factor affecting the repair of peripheral nerve injuries,while exosomes have been shown to promote angiogenesis.To further investigate the detailed processes and efficacy of exosome thera⁃py for ischemic peripheral nerve injuries,this study utilized glucose-modified near-infrared-II(NIR-II)quantum dots(QDs)to label adipose-derived stem cell exosomes(QDs-ADSC-Exos),enabling long-term in vivo NIR-II imaging of exosome treatment for ischemic peripheral nerve damage.Experimental results confirmed that QDs can be used for non-invasive in vitro labeling of exosomes,with QDs-ADSC-Exos exhibiting strong fluorescence signals in the NIR-II window and demonstrating favorable NIR-II imaging characteristics in vivo.Notably,QDsADSC-Exos showed accumulation at the site of nerve injury in cases of ischemic peripheral nerve damage.Func⁃tional neurological assessments indicated that QDs-ADSC-Exos effectively promoted neural regeneration.This study highlights the potential of exosomes in treating ischemic peripheral nerve injuries and elucidates the spatio⁃temporal characteristics of exosome therapy,providing objective evidence for the further optimization of exosomebased treatment protocols.展开更多
We review a 3d quantum gravity model, which incorporates massive spinning fields into the Euclidean path integral in a Chern-Simons formulation. Fundamental matter as defined in our previous preon model is recapped. B...We review a 3d quantum gravity model, which incorporates massive spinning fields into the Euclidean path integral in a Chern-Simons formulation. Fundamental matter as defined in our previous preon model is recapped. Both quantum gravity and the particle model are shown to be derivable from the supersymmetric 3d Chern-Simons action. Forces-Matter unification is achieved.展开更多
The Type-2 generalized Feistel structure is widely used in block cipher design.This work conducts a quantum key recovery attack on TWINE-80,a lightweight block cipher based on the improved Type-2 generalized Feistel s...The Type-2 generalized Feistel structure is widely used in block cipher design.This work conducts a quantum key recovery attack on TWINE-80,a lightweight block cipher based on the improved Type-2 generalized Feistel structure.By constructing a round function,a new 7-round quantum distinguisher for TWINE-80 is identified.Leveraging the reuse characteristics of round keys in the algorithm,three pairs of repeated round keys are discovered during the 5-round transformation process.Using Grover’s algorithm to search for partial round keys,a 17-round quantum key recovery attack on TWINE-80 is successfully implemented,with a time complexity of 296 and requiring 327 qubits.Compared to similar studies,this work reduces the time complexity by 26 and slightly decreases the required quantum resources by 12 qubits.展开更多
We propose a quantum Otto engine operating through a cycle of two isochoric processes,where the working substance interacts with a single-mode radiation field,and two unitary strokes,during which the working substance...We propose a quantum Otto engine operating through a cycle of two isochoric processes,where the working substance interacts with a single-mode radiation field,and two unitary strokes,during which the working substance is decoupled from the field.We investigate the influence of quantum superposition and quantum internal friction on the engine's power output and efficiency,demonstrating that these quantum effects enhance both performance metrics.While these enhancements are accompanied by increased power fluctuations,we show that such fluctuations can be effectively mitigated through careful selection of control parameters.Our results reveal that the proposed quantum Otto engine can achieve performance regimes that are thermally inconceivable in classical systems,including surpassing the Otto efficiency limit and attaining 100%efficiency with nonzero power output.展开更多
文摘Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs.
基金Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No. ZKSYS202204)the Talent Introduction Fund of Anhui University of Science and Technology (Grant No. 2021yjrc34)the Scientific Research Fund of Anhui Provincial Education Department (Grant No. KJ2020A0301)。
文摘Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching(HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation(QT)based on general simultaneous entanglement switching(SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform(IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise(phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.
基金support from the National Key Research and Development Program of China(2024YFA1207700)National Natural Science Foundation of China(52072141,52102170).
文摘The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices.
文摘Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order modes.A structure of mini-array is adopted to improve the heat dissipation capacity and beam quality of BA QCLs.The active region is etched to form a multi-emitter and the channels are filled with In P:Fe,which acts as a lateral heat dissipation channel to improve the lateral heat dissipation efficiency.A device withλ~4.8μm,a peak output power of 122 W at 1.2%duty cycle with a pulse of 1.5μs is obtained in room temperature,with far-field single-lobed distribution.This result allows BA QCLs to obtain high peak power at wider pump pulse widths and higher duty cycle conditions,promotes the application of the mid-infrared laser operating in pulsed mode in th e field of standoff photoacoustic chemical detection,space optical communication,and so on.
基金supported by the National Natural Science Foundation of China (No. 62204079)the Science and Technology Development Project of Henan Province (Nos.202300410048, 202300410057)+2 种基金the China Postdoctoral Science Foundation (No. 2022M711037)the Intelligence Introduction Plan of Henan Province in 2021 (No. CXJD2021008)Henan University Fund。
文摘Quantum dot(QD)-based infrared photodetector is a promising technology that can implement current monitoring,imaging and optical communication in the infrared region. However, the photodetection performance of self-powered QD devices is still limited by their unfavorable charge carrier dynamics due to their intrinsically discrete charge carrier transport process. Herein, we strategically constructed semiconducting matrix in QD film to achieve efficient charge transfer and extraction.The p-type semiconducting CuSCN was selected as energy-aligned matrix to match the n-type colloidal PbS QDs that was used as proof-of-concept. Note that the PbS QD/CuSCN matrix not only enables efficient charge carrier separation and transfer at nano-interfaces but also provides continuous charge carrier transport pathways that are different from the hoping process in neat QD film, resulting in improved charge mobility and derived collection efficiency. As a result, the target structure delivers high specific detectivity of 4.38 × 10^(12)Jones and responsivity of 782 mA/W at 808 nm, which is superior than that of the PbS QD-only photodetector(4.66 × 10^(11)Jones and 338 mA/W). This work provides a new structure candidate for efficient colloidal QD based optoelectronic devices.
基金financial support from the Doctoral Foundation of Henan University of Engineering(No.D2022025)National Natural Science Foundation of China(No.U2004162)+1 种基金National Natural Science Foundation of China(No.52302138)Key Project for Science and Technology Development of Henan Province(No.232102320221)。
文摘With the rapid development of electric vehicles,hybrid electric vehicles and smart grids,people's demand for large-scale energy storage devices is increasingly intense.As a new type of secondary battery,potassium ion battery is promising to replace the lithium-ion battery in the field of large-scale energy storage by virtue of its low price and environmental friendliness.At present,the research on the anode materials of potassium ion batteries mainly focuses on carbon materials and the design of various nanostructured metal-based materials.Problems such as poor rate performance and inferior cycle life caused by electrode structure comminution during charge and discharge have not been solved.Quantum dots/nanodots materials are a new type of nanomaterials that can effectively improve the utilization of electrode materials and reduce production costs.In addition,quantum dots/nanodots materials can enhance the electrode reaction kinetics,reduce the stress generated in cycling,and effectively alleviate the agglomeration and crushing of electrode materials.In this review,we will systematically introduce the synthesis methods,K+storage properties and K+storage mechanisms of carbon quantum dots and carbon-based transition metal compound quantum dots composites.This review will have significant references for potassium ion battery researchers.
文摘ı-quantum groups,arising from quantum symmetric pairs,are coideal subalgebras of quantum groups.ı-quantum groups are a vast generalization of quantum groups,as quantum groups can be viewed asıquantum groups of diagonal type.Recently,the braid group symmetries and Drinfeld new presentations of quantum groups have been generalized to affineı-quantum groups.In this paper,we construct PBW type bases for splitı-quantum groups of type ADE,based on their braid group symmetries and Drinfeld new presentations.This can be viewed as anı-analogue of the PBW-basis for affine quantum groups,and it generalizes the PBW-basis ofı-quantum groups of finite type.
文摘The no-cloning theorem has sparked considerable interest in achieving high-fidelity approximate quantum cloning.Most of the previous studies mainly focused on the cloning of single particle states,and cloning schemes used there are incapable of cloning quantum entangled states in multipartite systems.Few schemes were proposed for cloning multiparticle states,which consume more entanglement resources with loss of qubits,and the fidelity of the cloned state is relatively low.In this paper,cloning schemes for bipartite and tripartite entangled states based on photonic quantum walk and entanglement swapping are proposed.The results show that according to the proposed schemes,two high-fidelity(up to 0.75)cloned states can be obtained with less quantum resource consumption.Because of the simple cloning steps,few quantum resources and high fidelity,these schemes are both efficient and feasible.Moreover,this cloning machine eliminates the need for tracing out cloning machine,thereby minimizing resource waste.
基金supported by MEXT KAKENHI Grant(24K01295,26286013).
文摘Traditional p-type colloidal quantum dot(CQD)hole transport layers(HTLs)used in CQD solar cells(CQDSCs)are commonly based on organic ligands exchange and the layer-by-layer(LbL)technique.Nonetheless,the ligand detachment and complex fabrication process introduce surface defects,compromising device stability and efficiency.In this work,we propose a solution-phase ligand exchange(SPLE)method utilizing inorganic ligands to develop stable p-type lead sulfide(PbS)CQD inks for the first time.Various amounts of tin(Ⅱ)iodide(SnI_(2))were mixed with lead halide(PbX_(2);X=I,Br)in the ligand solution.By precisely controlling the SnI_(2)concentration,we regulate the transition of PbS QDs from n-type to p-type.PbS CQDSCs were fabricated using two different HTL approaches:one with 1,2-ethanedithiol(EDT)-passivated QDs via the LbL method(control)and another with inorganic ligand-passivated QD ink(target).The target devices achieved a higher power conversion efficiency(PCE)of 10.93%,compared to 9.83%for the control devices.This improvement is attributed to reduced interfacial defects and enhanced carrier mobility.The proposed technique offers an efficient pathway for producing stable p-type PbS CQD inks using inorganic ligands,paving the way for high-performance and flexible CQD-based optoelectronic devices.
基金State Key Lab of Processors,Institute of Computing Technology,Chinese Academy of Sciences(CLQ202516)the Fundamental Research Funds for the Central Universities of China(3282025047,3282024051,3282024009)。
文摘The advent of Grover’s algorithm presents a significant threat to classical block cipher security,spurring research into post-quantum secure cipher design.This study engineers quantum circuit implementations for three versions of the Ballet family block ciphers.The Ballet‑p/k includes a modular-addition operation uncommon in lightweight block ciphers.Quantum ripple-carry adder is implemented for both“32+32”and“64+64”scale to support this operation.Subsequently,qubits,quantum gates count,and quantum circuit depth of three versions of Ballet algorithm are systematically evaluated under quantum computing model,and key recovery attack circuits are constructed based on Grover’s algorithm against each version.The comprehensive analysis shows:Ballet-128/128 fails to NIST Level 1 security,while when the resource accounting is restricted to the Clifford gates and T gates set for the Ballet-128/256 and Ballet-256/256 quantum circuits,the design attains Level 3.
文摘Quantum computing offers unprecedented computational power, enabling simultaneous computations beyond traditional computers. Quantum computers differ significantly from classical computers, necessitating a distinct approach to algorithm design, which involves taming quantum mechanical phenomena. This paper extends the numbering of computable programs to be applied in the quantum computing context. Numbering computable programs is a theoretical computer science concept that assigns unique numbers to individual programs or algorithms. Common methods include Gödel numbering which encodes programs as strings of symbols or characters, often used in formal systems and mathematical logic. Based on the proposed numbering approach, this paper presents a mechanism to explore the set of possible quantum algorithms. The proposed approach is able to construct useful circuits such as Quantum Key Distribution BB84 protocol, which enables sender and receiver to establish a secure cryptographic key via a quantum channel. The proposed approach facilitates the process of exploring and constructing quantum algorithms.
基金Supported by National Key Research and Development Program in the 14th five year plan(2021YFA1200700)Strategic Priority Re⁃search Program of the Chinese Academy of Sciences(XDB0580000)Natural Science Foundation of China(62025405,62104235,62105348).
文摘Colloidal quantum dots(CQDs)are affected by the quantum confinement effect,which makes their bandgap tunable.This characteristic allows these materials to cover a broader infrared spectrum,providing a costeffective alternative to traditional infrared detector technology.Recently,thanks to the solution processing properties of quantum dots and their ability to integrate with silicon-based readout circuits on a single chip,infrared detectors based on HgTe CQDs have shown great application prospects.However,facing the challenges of vertically stacked photovoltaic devices,such as barrier layer matching and film non-uniformity,most devices integrated with readout circuits still use a planar structure,which limits the efficiency of light absorption and the effective separation and collection of photo-generated carriers.Here,by synthesizing high-quality HgTe CQDs and precisely controlling the interface quality,we have successfully fabricated a photovoltaic detector based on HgTe and ZnO QDs.At a working temperature of 80 K,this detector achieved a low dark current of 5.23×10^(-9)A cm^(-2),a high rectification ratio,and satisfactory detection sensitivity.This work paves a new way for the vertical integration of HgTe CQDs on silicon-based readout circuits,demonstrating their great potential in the field of high-performance infrared detection.
文摘In this second part of a study about quantum field oscillators with sub-oscillators and semi-quanta (IQuO), it is possible to show that in the initial phase of an interaction between two particles a no-dynamic process of reduction from a non-local to a local state takes place which cannot be described by Hamiltonian. We then describe the coupling of two IQuO of different particle-fields either at one point in space or at two distant points via an intermediary chain of coupled IQuO. The first aspect provides an understanding of the basic processes of creating and annihilating a pair. The second aspect describes the behaviour of two electrically charged particles through a process of phase shifts between the respective IQuO chains (CF1, CF2) implemented in a quantum entanglement via an intermediary chain (CB) of IQuO that originates changes in the direction of the two (CF1, CF2) distance-correlated ones. Thus, the semi-quanta structure of an IQuO and quantum entanglement identify the origin of the empirical law of attraction and repulsion between two electric charges.
基金Supported by the National Natural Science Foundation of China(62105039)。
文摘In the process of power scaling large-area Quantum Cascade Lasers(QCLs),challenges such as degradation of beam quality and emission of multilobed far-field modes are frequently encountered.These issues become particularly pronounced with an increase in ridge width,resulting in multimode problems.To tackle this,an innovative multi ridge waveguide structure based on the principle of supersymmetry(SUSY)was proposed.This structure comprises a wider main waveguide in the center and two narrower auxiliary waveguides on either side.The high-order modes of the main waveguide are coupled with the modes of the auxiliary waveguides through mode-matching design,and the optical loss of the auxiliary waveguides suppresses these modes,thereby achieving fundamental mode lasing of the wider main waveguide.This paper employs the finite difference eigenmode(FDE)method to perform detailed structural modeling and simulation optimization of the 4.6μm wavelength quantum cascade laser,successfully achieving a single transverse mode QCL with a ridge width of 10μm.In comparison to the traditional single-mode QCL(with a ridge width of about 5μm),the MRW structure has the potential to increase the gain area of the laser by 100%.This offers a novel design concept and methodology for enhancing the single-mode luminous power of mid-infrared quantum cascade lasers,which is of considerable significance.
文摘Quantum entanglement is a bizarre, counterintuitive phenomenon which shows that entangled subatomic particles remain related even when they are far apart, which was described by Einstein as “spooky action at a distance”. Although this phenomenon could be interpreted by a few theories, for example, the famous Copenhagen interpretation which describes that these states exist simultaneously by a wave function, however, there is still no unquestioned theory and it continues to puzzle people around the world. Here we propose a hypothesis that gravity cuts out stop functioning between subatomic particles based on the observations of a thought experiment. It is well known that the Universe is filled with various subatomic particles (e.g. cosmic neutrino background, CνB) and gravity is a universal force making any particle in the Universe attract any other. Based on these observations, it is expected that the CνB particles walking abreast will be combined together by their gravity after some time/distance, which will thus result in a greatly uneven distribution of CνB. However, the observational evidence showed that CνB is highly isotropic and homogenous, suggesting that gravity would no longer work at the subatomic scale. Thus, the relation of the paired subatomic particles would become some pure correlation of mass (or equivalent energy) status. In this case, time would be not required anymore due to the ineffectiveness of gravity. The proposed new interpretation matches the experimental observations well and finally possible thought experiments are presented to test this theory.
基金Supported by the National Natural Science Foundation of China(82371373,W2412120)the Shanghai Natural Science Foundation(21ZR1436100).
文摘Ischemia is a significant factor affecting the repair of peripheral nerve injuries,while exosomes have been shown to promote angiogenesis.To further investigate the detailed processes and efficacy of exosome thera⁃py for ischemic peripheral nerve injuries,this study utilized glucose-modified near-infrared-II(NIR-II)quantum dots(QDs)to label adipose-derived stem cell exosomes(QDs-ADSC-Exos),enabling long-term in vivo NIR-II imaging of exosome treatment for ischemic peripheral nerve damage.Experimental results confirmed that QDs can be used for non-invasive in vitro labeling of exosomes,with QDs-ADSC-Exos exhibiting strong fluorescence signals in the NIR-II window and demonstrating favorable NIR-II imaging characteristics in vivo.Notably,QDsADSC-Exos showed accumulation at the site of nerve injury in cases of ischemic peripheral nerve damage.Func⁃tional neurological assessments indicated that QDs-ADSC-Exos effectively promoted neural regeneration.This study highlights the potential of exosomes in treating ischemic peripheral nerve injuries and elucidates the spatio⁃temporal characteristics of exosome therapy,providing objective evidence for the further optimization of exosomebased treatment protocols.
文摘We review a 3d quantum gravity model, which incorporates massive spinning fields into the Euclidean path integral in a Chern-Simons formulation. Fundamental matter as defined in our previous preon model is recapped. Both quantum gravity and the particle model are shown to be derivable from the supersymmetric 3d Chern-Simons action. Forces-Matter unification is achieved.
文摘The Type-2 generalized Feistel structure is widely used in block cipher design.This work conducts a quantum key recovery attack on TWINE-80,a lightweight block cipher based on the improved Type-2 generalized Feistel structure.By constructing a round function,a new 7-round quantum distinguisher for TWINE-80 is identified.Leveraging the reuse characteristics of round keys in the algorithm,three pairs of repeated round keys are discovered during the 5-round transformation process.Using Grover’s algorithm to search for partial round keys,a 17-round quantum key recovery attack on TWINE-80 is successfully implemented,with a time complexity of 296 and requiring 327 qubits.Compared to similar studies,this work reduces the time complexity by 26 and slightly decreases the required quantum resources by 12 qubits.
基金supported by the National Natural Science Foundation of China(Grant No.12465009)support from the Major Program of Jiangxi Provincial Natural Science Foundation,China(Grant No.20224ACB201007)。
文摘We propose a quantum Otto engine operating through a cycle of two isochoric processes,where the working substance interacts with a single-mode radiation field,and two unitary strokes,during which the working substance is decoupled from the field.We investigate the influence of quantum superposition and quantum internal friction on the engine's power output and efficiency,demonstrating that these quantum effects enhance both performance metrics.While these enhancements are accompanied by increased power fluctuations,we show that such fluctuations can be effectively mitigated through careful selection of control parameters.Our results reveal that the proposed quantum Otto engine can achieve performance regimes that are thermally inconceivable in classical systems,including surpassing the Otto efficiency limit and attaining 100%efficiency with nonzero power output.