期刊文献+
共找到137篇文章
< 1 2 7 >
每页显示 20 50 100
Numbering and Generating Quantum Algorithms
1
作者 Mohamed A. El-Dosuky 《Journal of Computer and Communications》 2025年第2期126-141,共16页
Quantum computing offers unprecedented computational power, enabling simultaneous computations beyond traditional computers. Quantum computers differ significantly from classical computers, necessitating a distinct ap... Quantum computing offers unprecedented computational power, enabling simultaneous computations beyond traditional computers. Quantum computers differ significantly from classical computers, necessitating a distinct approach to algorithm design, which involves taming quantum mechanical phenomena. This paper extends the numbering of computable programs to be applied in the quantum computing context. Numbering computable programs is a theoretical computer science concept that assigns unique numbers to individual programs or algorithms. Common methods include Gödel numbering which encodes programs as strings of symbols or characters, often used in formal systems and mathematical logic. Based on the proposed numbering approach, this paper presents a mechanism to explore the set of possible quantum algorithms. The proposed approach is able to construct useful circuits such as Quantum Key Distribution BB84 protocol, which enables sender and receiver to establish a secure cryptographic key via a quantum channel. The proposed approach facilitates the process of exploring and constructing quantum algorithms. 展开更多
关键词 quantum algorithms Numbering Computable Programs quantum Key Distribution
在线阅读 下载PDF
A Survey of Analysis on Quantum Algorithms for Communication
2
作者 Huang Yuhong Cui Chunfeng +5 位作者 Pan Chengkang Hou Shuai Sun Zhiwen Lu Xian Li Xinying Yuan Yifei 《China Communications》 2025年第6期1-23,共23页
Quantum computing is a promising technology that has the potential to revolutionize many areas of science and technology,including communication.In this review,we discuss the current state of quantum computing in comm... Quantum computing is a promising technology that has the potential to revolutionize many areas of science and technology,including communication.In this review,we discuss the current state of quantum computing in communication and its potential applications in various areas such as network optimization,signal processing,and machine learning for communication.First,the basic principle of quantum computing,quantum physics systems,and quantum algorithms are analyzed.Then,based on the classification of quantum algorithms,several important basic quantum algorithms,quantum optimization algorithms,and quantum machine learning algorithms are discussed in detail.Finally,the basic ideas and feasibility of introducing quantum algorithms into communications are emphatically analyzed,which provides a reference to address computational bottlenecks in communication networks. 展开更多
关键词 network optimization physical system quantum computing quantum machine learning quantum optimization algorithm signal processing
在线阅读 下载PDF
Quantum algorithms for matrix operations and linear systems of equations
3
作者 Wentao Qi Alexandr I Zenchuk +1 位作者 Asutosh Kumar Junde Wu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第3期100-112,共13页
Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-ve... Fundamental matrix operations and solving linear systems of equations are ubiquitous in scientific investigations.Using the‘sender-receiver’model,we propose quantum algorithms for matrix operations such as matrix-vector product,matrix-matrix product,the sum of two matrices,and the calculation of determinant and inverse matrix.We encode the matrix entries into the probability amplitudes of the pure initial states of senders.After applying proper unitary transformation to the complete quantum system,the desired result can be found in certain blocks of the receiver’s density matrix.These quantum protocols can be used as subroutines in other quantum schemes.Furthermore,we present an alternative quantum algorithm for solving linear systems of equations. 展开更多
关键词 matrix operation systems of linear equations ‘sender-receiver’quantum computation model quantum algorithm
原文传递
Quantum Algorithms for Some Well—Known NP Problems 被引量:1
4
作者 GUOHao LONGGui-Lu 等 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第4期424-426,共3页
It is known that quantum computer is more powerful than classical computer.In this paper we present quantum algorithms for some famous NP problems in graph theory and combination theory,these quantum algorithms are at... It is known that quantum computer is more powerful than classical computer.In this paper we present quantum algorithms for some famous NP problems in graph theory and combination theory,these quantum algorithms are at least quadratically faster than the classical ones. 展开更多
关键词 quantum algorithms NP problem graph theory combination theory
在线阅读 下载PDF
Quantum Algorithms and Experiment Implementations Based on IBM Q
5
作者 Wenjie Liu Junxiu Chen +3 位作者 Yinsong Xu Jiahao Tang Lian Tong Xiaoyu Song 《Computers, Materials & Continua》 SCIE EI 2020年第11期1671-1689,共19页
With the rapid development of quantum theory and technology in recent years,especially the emergence of some quantum cloud computing platforms,more and more researchers are not satisfied with the theoretical derivatio... With the rapid development of quantum theory and technology in recent years,especially the emergence of some quantum cloud computing platforms,more and more researchers are not satisfied with the theoretical derivation and simulation verification of quantum computation(especially quantum algorithms),experimental verification on real quantum devices has become a new trend.In this paper,three representative quantum algorithms,namely Deutsch-Jozsa,Grover,and Shor algorithms,are briefly depicted,and then their implementation circuits are presented,respectively.We program these circuits on python with QISKit to connect the remote real quantum devices(i.e.,ibmqx4,ibmqx5)on IBM Q to verify these algorithms.The experimental results not only show the feasibility of these algorithms,but also serve to evaluate the functionality of these devices. 展开更多
关键词 quantum algorithms implementation circuit IBM Q QISKit program
在线阅读 下载PDF
Variational quantum algorithms for trace norms and their applications 被引量:1
6
作者 Sheng-Jie Li Jin-Min Liang +1 位作者 Shu-Qian Shen Ming Li 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第10期90-96,共7页
The trace norm of matrices plays an important role in quantum information and quantum computing. How to quantify it in today’s noisy intermediate scale quantum(NISQ) devices is a crucial task for information processi... The trace norm of matrices plays an important role in quantum information and quantum computing. How to quantify it in today’s noisy intermediate scale quantum(NISQ) devices is a crucial task for information processing. In this paper, we present three variational quantum algorithms on NISQ devices to estimate the trace norms corresponding to different situations.Compared with the previous methods, our means greatly reduce the requirement for quantum resources. Numerical experiments are provided to illustrate the effectiveness of our algorithms. 展开更多
关键词 quantum algorithm trace norm variational algorithm
原文传递
Application of quantum algorithms to direct measurement of concurrence of a two-qubit pure state
7
作者 王洪福 张寿 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第7期2642-2648,共7页
This paper proposes a method to measure directly the concurrence of an arbitrary two-qubit pure state based on a generalized Grover quantum iteration algorithm and a phase estimation algorithm. The concurrence can be ... This paper proposes a method to measure directly the concurrence of an arbitrary two-qubit pure state based on a generalized Grover quantum iteration algorithm and a phase estimation algorithm. The concurrence can be calculated by applying quantum algorithms to two available copies of the bipartite system, and a final measurement on the auxiliary working qubits gives a better estimation of the concurrence. This method opens new prospects of entanglement measure by the application of quantum algorithms. The implementation of the protocol would be an important step toward quantum information processing and more complex entanglement measure of the finite-dimensional quantum system with an arbitrary number of qubits. 展开更多
关键词 CONCURRENCE quantum algorithm entanglement measure
原文传递
Quantum algorithms for uncertainty quantification:Applications to partial differential equations
8
作者 Francoise Golse Shi Jin Nana Liu 《Science China(Physics,Mechanics & Astronomy)》 2025年第10期34-55,共22页
Most problems in uncertainty quantification,despite their ubiquitousness in scientific computing,applied mathematics and data science,remain formidable on a classical computer.For uncertainties that arise in partial d... Most problems in uncertainty quantification,despite their ubiquitousness in scientific computing,applied mathematics and data science,remain formidable on a classical computer.For uncertainties that arise in partial differential equations(PDEs),large numbers M>>1 of samples are required to obtain accurate ensemble averages.This usually involves solving the PDE M times.In addition,to characterise the stochasticity in a PDE,the dimension L of the random input variables is high in most cases,and classical algorithms suffer from the curse-of-dimensionality.We propose new quantum algorithms for PDEs with uncertain coefficients that are more efficient in M and L in various important regimes,compared to their classical counterparts.We introduce transformations that convert the original d-dimensional equation(with uncertain coefficients)into d+L(for dissipative equations)or d+2L(for wave type equations)dimensional equations(with certain coefficients)in which the uncertainties appear only in the initial data.These transformations also allow one to superimpose the M different initial data,so the computational cost for the quantum algorithm to obtain the ensemble average from M different samples is independent of M,while also showing potential advantage in d,L and precisionεin computing ensemble averaged solutions or physical observables. 展开更多
关键词 partial differential equations quantum algorithm uncertainty quantification
原文传递
Variational quantum algorithms for scanning the complex spectrum of non-Hermitian systems 被引量:2
9
作者 Xu-Dan Xie Zheng-Yuan Xue Dan-Bo Zhang 《Frontiers of physics》 SCIE CSCD 2024年第4期275-285,共11页
Solving non-Hermitian quantum many-body systems on a quantum computer by minimizing the variational energy is challenging as the energy can be complex.Here,we propose a variational quantum algorithm for solving the no... Solving non-Hermitian quantum many-body systems on a quantum computer by minimizing the variational energy is challenging as the energy can be complex.Here,we propose a variational quantum algorithm for solving the non-Hermitian Hamiltonian by minimizing a type of energy variance,where zero variance can naturally determine the eigenvalues and the associated left and right eigenstates.Moreover,the energy is set as a parameter in the cost function and can be tuned to scan the whole spectrum efficiently by using a two-step optimization scheme.Through numerical simulations,we demonstrate the algorithm for preparing the left and right eigenstates,verifying the biorthogonal relations,as well as evaluating the observables.We also investigate the impact of quantum noise on our algorithm and show that its performance can be largely improved using error mitigation techniques.Therefore,our work suggests an avenue for solving non-Hermitian quantum many-body systems with variational quantum algorithms on near-term noisy quantum computers. 展开更多
关键词 quantum algorithm non-Hermitian physics quantum manybody systems
原文传递
Variational Quantum Algorithm for Solving the Liouvillian Gap
10
作者 Xu-Dan Xie Zheng-Yuan Xue Dan-Bo Zhang 《Chinese Physics Letters》 2025年第8期121-128,共8页
In open quantum systems,the Liouvillian gap characterizes the relaxation time toward the steady state.However,accurately computing this quantity is notoriously difficult due to the exponential growth of the Hilbert sp... In open quantum systems,the Liouvillian gap characterizes the relaxation time toward the steady state.However,accurately computing this quantity is notoriously difficult due to the exponential growth of the Hilbert space and the non-Hermitian nature of the Liouvillian superoperator.In this work,we propose a variational quantum algorithm for efficiently estimating the Liouvillian gap.By utilizing the Choi-Jamio lkowski isomorphism,we reformulate the problem as finding the first excitation energy of an effective non-Hermitian Hamiltonian.Our method employs variance minimization with an orthogonality constraint to locate the first excited state and adopts a two-stage optimization scheme to enhance convergence.Moreover,to address scenarios with degenerate steady states,we introduce an iterative energy-offset scanning technique.Numerical simulations on the dissipative XXZ model confirm the accuracy and robustness of our algorithm across a range of system sizes and dissipation strengths.These results demonstrate the promise of variational quantum algorithms for simulating open quantum many-body systems on near-term quantum hardware. 展开更多
关键词 open quantum systems liouvillian gap relaxation time toward steady statehoweveraccurately hilbert space choi jamio lokia isomorphism finding first excitation energy variational quantum algorithm
原文传递
A variational quantum algorithm for the Poisson equation based on the banded Toeplitz systems
11
作者 Xiaoqi Liu Yuedi Qu +1 位作者 Ming Li Shu-Qian Shen 《Communications in Theoretical Physics》 2025年第4期23-33,共11页
To solve the Poisson equation it is usually possible to discretize it into solving the corresponding linear system Ax=b.Variational quantum algorithms(VQAs)for the discretized Poisson equation have been studied before... To solve the Poisson equation it is usually possible to discretize it into solving the corresponding linear system Ax=b.Variational quantum algorithms(VQAs)for the discretized Poisson equation have been studied before.We present a VQA based on the banded Toeplitz systems for solving the Poisson equation with respect to the structural features of matrix A.In detail,we decompose the matrices A and A^(2)into a linear combination of the corresponding banded Toeplitz matrix and sparse matrices with only a few non-zero elements.For the one-dimensional Poisson equation with different boundary conditions and the d-dimensional Poisson equation with Dirichlet boundary conditions,the number of decomposition terms is less than that reported in[Phys.Rev.A 2023108,032418].Based on the decomposition of the matrix,we design quantum circuits that efficiently evaluate the cost function.Additionally,numerical simulation verifies the feasibility of the proposed algorithm.Finally,the VQAs for linear systems of equations and matrix-vector multiplications with the K-banded Toeplitz matrix T_(n)^(K)are given,where T_(n)^(K)∈R^(n×n)and K∈O(ploylogn). 展开更多
关键词 variational quantum algorithm Poisson equation quantum circuit
原文传递
Variational quantum algorithm for designing quantum information maskers
12
作者 Jin-Ze Li Ming-Hao Wang Bin Zhou 《Communications in Theoretical Physics》 2025年第3期66-74,共9页
Since the concept of quantum information masking was proposed by Modi et al(2018 Phys.Rev.Lett.120,230501),many interesting and significant results have been reported,both theoretically and experimentally.However,desi... Since the concept of quantum information masking was proposed by Modi et al(2018 Phys.Rev.Lett.120,230501),many interesting and significant results have been reported,both theoretically and experimentally.However,designing a quantum information masker is not an easy task,especially for larger systems.In this paper,we propose a variational quantum algorithm to resolve this problem.Specifically,our algorithm is a hybrid quantum-classical model,where the quantum device with adjustable parameters tries to mask quantum information and the classical device evaluates the performance of the quantum device and optimizes its parameters.After optimization,the quantum device behaves as an optimal masker.The loss value during optimization can be used to characterize the performance of the masker.In particular,if the loss value converges to zero,we obtain a perfect masker that completely masks the quantum information generated by the quantum information source,otherwise,the perfect masker does not exist and the subsystems always contain the original information.Nevertheless,these resulting maskers are still optimal.Quantum parallelism is utilized to reduce quantum state preparations and measurements.Our study paves the way for wide application of quantum information masking,and some of the techniques used in this study may have potential applications in quantum information processing. 展开更多
关键词 variational quantum algorithm quantum information masking quantum parallelism
原文传递
Efficient implementation of quantum permutation algorithm using a polar SrO molecule in pendular states
13
作者 Jie-Ru Hu Zuo-Yuan Zhang Jin-Ming Liu 《Communications in Theoretical Physics》 2025年第2期39-51,共13页
Quantum algorithms offer more enhanced computational efficiency in comparison to their classical counterparts when solving specific tasks.In this study,we implement the quantum permutation algorithm utilizing a polar ... Quantum algorithms offer more enhanced computational efficiency in comparison to their classical counterparts when solving specific tasks.In this study,we implement the quantum permutation algorithm utilizing a polar molecule within an external electric field.The selection of the molecular qutrit involves the utilization of field-dressed states generated through the pendular modes of SrO.Through the application of multi-target optimal control theory,we strategically design microwave pulses to execute logical operations,including Fourier transform,oracle U_(f)operation,and inverse Fourier transform within a three-level molecular qutrit structure.The observed high fidelity of our outcomes is intricately linked to the concept of the quantum speed limit,which quantifies the maximum speed of quantum state manipulation.Subsequently,we design the optimized pulse sequence to successfully simulate the quantum permutation algorithm on a single SrO molecule,achieving remarkable fidelity.Consequently,a quantum circuit comprising a single qutrit suffices to determine permutation parity with just a single function evaluation.Therefore,our results indicate that the optimal control theory can be well applied to the quantum computation of polar molecular systems. 展开更多
关键词 polar molecule optimal control quantum permutation algorithm pendular states
原文传递
Quantum color image encryption: Dual scrambling scheme based on DNA codec and quantum Arnold transform
14
作者 Tao Cheng Run-Sheng Zhao +2 位作者 Shuang Wang Kehan Wang Hong-Yang Ma 《Chinese Physics B》 2025年第1期235-244,共10页
In the field of Internet, an image is of great significance to information transmission. Meanwhile, how to ensure and improve its security has become the focus of international research. We combine DNA codec with quan... In the field of Internet, an image is of great significance to information transmission. Meanwhile, how to ensure and improve its security has become the focus of international research. We combine DNA codec with quantum Arnold transform(QAr T) to propose a new double encryption algorithm for quantum color images to improve the security and robustness of image encryption. First, we utilize the biological characteristics of DNA codecs to perform encoding and decoding operations on pixel color information in quantum color images, and achieve pixel-level diffusion. Second, we use QAr T to scramble the position information of quantum images and use the operated image as the key matrix for quantum XOR operations. All quantum operations in this paper are reversible, so the decryption operation of the ciphertext image can be realized by the reverse operation of the encryption process. We conduct simulation experiments on encryption and decryption using three color images of “Monkey”, “Flower”, and “House”. The experimental results show that the peak value and correlation of the encrypted images on the histogram have good similarity, and the average normalized pixel change rate(NPCR) of RGB three-channel is 99.61%, the average uniform average change intensity(UACI) is 33.41%,and the average information entropy is about 7.9992. In addition, the robustness of the proposed algorithm is verified by the simulation of noise interference in the actual scenario. 展开更多
关键词 DNA codec quantum Arnold transform quantum image encryption algorithm
原文传递
Progressive quantum algorithm for maximum independent set with quantum alternating operator ansatz
15
作者 Xiao-Hui Ni Ling-Xiao Li +3 位作者 Yan-Qi Song Zheng-Ping Jin Su-Juan Qin Fei Gao 《Chinese Physics B》 2025年第7期75-87,共13页
The quantum alternating operator ansatz algorithm(QAOA+)is widely used for constrained combinatorial optimization problems(CCOPs)due to its ability to construct feasible solution spaces.In this paper,we propose a prog... The quantum alternating operator ansatz algorithm(QAOA+)is widely used for constrained combinatorial optimization problems(CCOPs)due to its ability to construct feasible solution spaces.In this paper,we propose a progressive quantum algorithm(PQA)to reduce qubit requirements for QAOA+in solving the maximum independent set(MIS)problem.PQA iteratively constructs a subgraph likely to include the MIS solution of the original graph and solves the problem on it to approximate the global solution.Specifically,PQA starts with a small-scale subgraph and progressively expands its graph size utilizing heuristic expansion strategies.After each expansion,PQA solves the MIS problem on the newly generated subgraph using QAOA+.In each run,PQA repeats the expansion and solving process until a predefined stopping condition is reached.Simulation results show that PQA achieves an approximation ratio of 0.95 using only 5.57%(2.17%)of the qubits and 17.59%(6.43%)of the runtime compared with directly solving the original problem with QAOA+on Erd?s-Rényi(3-regular)graphs,highlighting the efficiency and scalability of PQA. 展开更多
关键词 quantum alternating operator ansatz algorithm(QAOA+) constrained combinatorial optimization problems(CCOPs) maximum independent set(MIS) feasible space
原文传递
Near-term quantum computing techniques: Variational quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation 被引量:4
16
作者 He-Liang Huang Xiao-Yue Xu +5 位作者 Chu Guo Guojing Tian Shi-Jie Wei Xiaoming Sun Wan-Su Bao Gui-Lu Long 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2023年第5期23-72,共50页
Quantum computing is a game-changing technology for global academia,research centers and industries including computational science,mathematics,finance,pharmaceutical,materials science,chemistry and cryptography.Altho... Quantum computing is a game-changing technology for global academia,research centers and industries including computational science,mathematics,finance,pharmaceutical,materials science,chemistry and cryptography.Although it has seen a major boost in the last decade,we are still a long way from reaching the maturity of a full-fledged quantum computer.That said,we will be in the noisy-intermediate scale quantum(NISQ)era for a long time,working on dozens or even thousands of qubits quantum computing systems.An outstanding challenge,then,is to come up with an application that can reliably carry out a nontrivial task of interest on the near-term quantum devices with non-negligible quantum noise.To address this challenge,several near-term quantum computing techniques,including variational quantum algorithms,error mitigation,quantum circuit compilation and benchmarking protocols,have been proposed to characterize and mitigate errors,and to implement algorithms with a certain resistance to noise,so as to enhance the capabilities of near-term quantum devices and explore the boundaries of their ability to realize useful applications.Besides,the development of near-term quantum devices is inseparable from the efficient classical sim-ulation,which plays a vital role in quantum algorithm design and verification,error-tolerant verification and other applications.This review will provide a thorough introduction of these near-term quantum computing techniques,report on their progress,and finally discuss the future prospect of these techniques,which we hope will motivate researchers to undertake additional studies in this field. 展开更多
关键词 quantum computing noisy-intermediate scale quantum variational quantum algorithms error mitigation circuit com-pilation benchmarking protocols classical simulation
原文传递
Cavity control as a new quantum algorithms implementation treatment 被引量:2
17
作者 M. AbuGhanem A. H. Homid M. Abdel-Aty 《Frontiers of physics》 SCIE CSCD 2018年第1期187-199,共13页
Based on recent experiments [Nature 449, 438 (2007) and Nature Physics 6, 777 (2010)], a new approach for realizing quantum gates for the design of quantum algorithms was developed. Accordingly, the operation time... Based on recent experiments [Nature 449, 438 (2007) and Nature Physics 6, 777 (2010)], a new approach for realizing quantum gates for the design of quantum algorithms was developed. Accordingly, the operation times of such gates while functioning in algorithm applications depend on the number of photons present in their resonant cavities. Multi-qubit algorithms can be realized in systems in which the photon number is increased slightly over the qubit number. In addition, the time required for operation is considerably less than the dephasing and relaxation times of the systems. The contextual use of the photon number as a main control in the realization of any algorithm was demonstrated. The results indicate the possibility of a full integration into the realization of multi-qubit multiphoton states and its application in algorithm designs. Yhrthermore, this approach will lead to a successful implementation of these designs in future experiments. 展开更多
关键词 quantum computation quantum algorithms implementation cavity control
原文传递
Quantum Software Engineering: Best Practices from Classical to Quantum Approaches
18
作者 Abdullah Ibrahim S. Alsalman 《Journal of Quantum Information Science》 2024年第4期234-258,共25页
As quantum computing transitions from a theoretical domain to a practical technology, many aspects of established practice in software engineering are being faced with new challenges. Quantum Software Engineering has ... As quantum computing transitions from a theoretical domain to a practical technology, many aspects of established practice in software engineering are being faced with new challenges. Quantum Software Engineering has been developed to address the peculiar needs that arise with quantum systems’ dependable, scalable, and fault-tolerant software development. The present paper critically reviews how traditional software engineering methodologies can be reshaped to fit into the quantum field. This also entails providing some critical contributions: frameworks to integrate classical and quantum systems, new error mitigation techniques, and the development of quantum-specific testing and debugging tools. In this respect, best practices have been recommended to ensure that future quantum software can harness the evolving capabilities of quantum hardware with continued performance, reliability, and scalability. The work is supposed to act as a foundational guide for the researcher and developer as quantum computing approaches widespread scientific and industrial adoption. 展开更多
关键词 quantum Software Engineering quantum Computing quantum algorithms quantum Software Development Lifecycle Error Mitigation Classical-quantum Integration quantum Debugging Scalable quantum Systems Fault Tolerant Computing
在线阅读 下载PDF
Characterization of Exact One-Query Quantum Algorithms for Partial Boolean Functions
19
作者 叶泽坤 李绿周 《Journal of Computer Science & Technology》 SCIE EI CSCD 2023年第6期1423-1430,共8页
The query model(or black-box model)has attracted much attention from the communities of both classical and quantum computing.Usually,quantum advantages are revealed by presenting a quantum algorithm that has a better ... The query model(or black-box model)has attracted much attention from the communities of both classical and quantum computing.Usually,quantum advantages are revealed by presenting a quantum algorithm that has a better query complexity than its classical counterpart.In the history of quantum algorithms,the Deutsch algorithm and the Deutsch-Jozsa algorithm play a fundamental role and both are exact one-query quantum algorithms.This leads us to con-sider the problem:what functions can be computed by exact one-query quantum algorithms?This problem has been ad-dressed in the literature for total Boolean functions and symmetric partial Boolean functions,but is still open for general partial Boolean functions.Thus,in this paper,we continue to characterize the computational power of exact one-query quantum algorithms for general partial Boolean functions.First,we present several necessary and sufficient conditions for a partial Boolean function to be computed by exact one-query quantum algorithms.Second,inspired by these conditions,we discover some new representative functions that can be computed by exact one-query quantum algorithms but have an essential difference from the already known ones.Specially,it is worth pointing out that before our work,the known func-tions that can be computed by exact one-query quantum algorithms are all symmetric functions and the quantum algo-rithm used is essentially the Deutsch-Jozsa algorithm,whereas the functions discovered in this paper are generally asym-metric and new algorithms to compute these functions are required.Thus,this expands the class of functions that can be computed by exact one-query quantum algorithms. 展开更多
关键词 quantum computing quantum query complexity quantum algorithm
原文传递
Quantum adiabatic algorithms using unitary interpolation
20
作者 Shuo Zhang Qian-Heng Duan +4 位作者 Tan Li Xiang-Qun Fu He-Liang Huang Xiang Wang Wan-Su Bao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第1期164-167,共4页
We present two efficient quantum adiabatic algorithms for Bernstein–Vazirani problem and Simon’s problem.We show that the time complexities of the algorithms for Bernstein–Vazirani problem and Simon’s problem are ... We present two efficient quantum adiabatic algorithms for Bernstein–Vazirani problem and Simon’s problem.We show that the time complexities of the algorithms for Bernstein–Vazirani problem and Simon’s problem are O(1)and O(n),respectively,which are the same complexities as the corresponding algorithms in quantum circuit model.In these two algorithms,the adiabatic Hamiltonians are realized by unitary interpolation instead of standard linear interpolation.Comparing with the adiabatic algorithms using linear interpolation,the energy gaps of our algorithms keep constant.Therefore,the complexities are much easier to analyze using this method. 展开更多
关键词 adiabatic quantum computation quantum adiabatic algorithms
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部