We study the possible topological phase in a one-dimensional(1D) quantum wire with an oscillating Rashba spin–orbital coupling in real space. It is shown that there are a pair of particle–hole symmetric gaps formi...We study the possible topological phase in a one-dimensional(1D) quantum wire with an oscillating Rashba spin–orbital coupling in real space. It is shown that there are a pair of particle–hole symmetric gaps forming in the bulk energy band and fractional boundary states residing in the gap when the system has an inversion symmetry. These states are topologically nontrivial and can be characterized by a quantized Berry phase ±π or nonzero Chern number through dimensional extension. When the Rashba spin–orbital coupling varies slowly with time, the system can pump out 2 charges in a pumping cycle because of the spin flip effect. This quantized pumping is protected by topology and is robust against moderate disorders as long as the disorder strength does not exceed the opened energy gap.展开更多
In this paper we present both the classical and quantum periodic-orbits of a neutral spinning particle constrained in two-dimensional central-potentials with a cylindrically symmetric electric-field in addition,which ...In this paper we present both the classical and quantum periodic-orbits of a neutral spinning particle constrained in two-dimensional central-potentials with a cylindrically symmetric electric-field in addition,which leads to an effective non-Abelian gauge field generated by the spin-orbit coupling.Coherent superposition of orbital angular-eigenfunctions obtained explicitly under the condition of zero-energy exhibits the quantum-classical correspondence in the meaning of exact coincidence between classical orbits and spatial patterns of quantum wave-functions,which as a consequence results in the fractional quantization of orbital angular-momentum by the requirement of the same rotational symmetry of quantum and classical orbits.A non-Abelian anyon-model emerges in a natural way.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.115074045 and 11204187)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20131284)
文摘We study the possible topological phase in a one-dimensional(1D) quantum wire with an oscillating Rashba spin–orbital coupling in real space. It is shown that there are a pair of particle–hole symmetric gaps forming in the bulk energy band and fractional boundary states residing in the gap when the system has an inversion symmetry. These states are topologically nontrivial and can be characterized by a quantized Berry phase ±π or nonzero Chern number through dimensional extension. When the Rashba spin–orbital coupling varies slowly with time, the system can pump out 2 charges in a pumping cycle because of the spin flip effect. This quantized pumping is protected by topology and is robust against moderate disorders as long as the disorder strength does not exceed the opened energy gap.
基金supported by the National Natural Science Foundation ofChina(Grant Nos.11075099 and 11275118)
文摘In this paper we present both the classical and quantum periodic-orbits of a neutral spinning particle constrained in two-dimensional central-potentials with a cylindrically symmetric electric-field in addition,which leads to an effective non-Abelian gauge field generated by the spin-orbit coupling.Coherent superposition of orbital angular-eigenfunctions obtained explicitly under the condition of zero-energy exhibits the quantum-classical correspondence in the meaning of exact coincidence between classical orbits and spatial patterns of quantum wave-functions,which as a consequence results in the fractional quantization of orbital angular-momentum by the requirement of the same rotational symmetry of quantum and classical orbits.A non-Abelian anyon-model emerges in a natural way.