Branch angles are an important plant morphological trait affecting light interception within forest canopies.However,studies on branch angles have been limited due to the time-consuming nature of manual measurements u...Branch angles are an important plant morphological trait affecting light interception within forest canopies.However,studies on branch angles have been limited due to the time-consuming nature of manual measurements using a protractor.Terrestrial laser scanning(TLS),however,provides new opportunities to measure branch angles more efficiently.Despite this potential,studies validating branch angle measurements from TLS have been limited.Here,our aim is to evaluate both manual and automatic branch angle measurements of European beech from TLS data using traditional field-measurements with a protractor as a reference.We evaluated the accuracy of branch angle measurements based on four automated algorithms(aRchiQSM,TreeQSM,Laplacian,SemanticLaplacian)from TLS data.Additionally,we assessed different ways of manual branch angle measurements in the field.Our study was based on a dataset comprising 124 branch angles measured from six European beech in a European deciduous forest.Our results show that manual branch angle measurements from TLS data are in high agreement with the reference(root-mean-squared error,RMSE:[3.57°-4.18°],concordance correlation coefficient,CCC:[0.950.97])across different branch length positions.Automated algorithms also are in high agreement with the reference although RMSE is approximately twice as large compared to manual branch angle measurements from TLS(RMSE:[9.29°-10.55°],CCC:[0.830.86])with manual leaf points removal.When applying the automatic wood-leaf separation algorithm,the performance of the four methods declined significantly,with only approximately 20 branch angles successfully identified.Moreover,it is important to note that there is no influence of the measurement position(branch surface versus center)for branch angle measurements.However,for curved branches,the selection of branch measurement length significantly impacts the branch angle measurement.This study provides a comprehensive understanding of branch angle measurements in forests.We show that automated measurement methods based on TLS data of branch angles are a valuable tool to quantify branch angles at larger scales.展开更多
Background:Species-specific genotypic features,local neighbourhood interactions and resource supply strongly influence the tree stature and growth rate.In mixed-species forests,diversity-mediated biomass allocation ha...Background:Species-specific genotypic features,local neighbourhood interactions and resource supply strongly influence the tree stature and growth rate.In mixed-species forests,diversity-mediated biomass allocation has been suggested to be a fundamental mechanism underlying the positive biodiversity-productivity relationships.Empirical evidence,however,is rare about the impact of local neighbourhood diversity on tree characteristics analysed at a very high level of detail.To address this issue we analysed these effects on the individual-tree crown architecture and tree productivity in a mature mixed forest in northern Germany.Methods:Our analysis considers multiple target tree species across a local neighbourhood species richness gradient ranging from 1 to 4.We applied terrestrial laser scanning to quantify a large number of individual mature trees(N=920)at very high accuracy.We evaluated two different neighbour inclusion approaches by analysing both a fixed radius selection procedure and a selection based on overlapping crowns.Results and conclusions:We show that local neighbourhood species diversity significantly increases crown dimension and wood volume of target trees.Moreover,we found a size-dependency of diversity effects on tree productivity(basal area and wood volume increment)with positive effects for large-sized trees(diameter at breast height(DBH)>40 cm)and negative effects for small-sized(DBH<40 cm)trees.In our analysis,the neighbour inclusion approach has a significant impact on the outcome.For scientific studies and the validation of growth models we recommend a neighbour selection by overlapping crowns,because this seems to be the relevant scale at which local neighbourhood interactions occur.Because local neighbourhood diversity promotes individual-tree productivity in mature European mixed-species forests,we conclude that a small-scale species mixture should be considered in management plans.展开更多
AIM:To use leptin-deficient(ob/ob) mice with demonstrated differences in steatosis levels to test a new diagnostic method using the acoustical structure quantification(ASQ) mode and the associated analytical parameter...AIM:To use leptin-deficient(ob/ob) mice with demonstrated differences in steatosis levels to test a new diagnostic method using the acoustical structure quantification(ASQ) mode and the associated analytical parameter,"focal disturbance ratio"(FD-ratio).METHODS:Nine ob/ob mice,at 5,8,and 12 wk of age(n = 3 in each age group),were used as models for hepatic steatosis.Echo signals obtained from ultrasonography in the mice were analyzed by ASQ,which uses a statistical analysis of echo amplitude to estimate inhomogeneity in the diagnostic region.FD-ratio,as calculated from this analysis,was the focus of the present study.FD-ratio and fat droplet areas and sizes were compared between age groups.RESULTS:No fibrosis or inflammation was observed in any of the groups.The fat droplet area significantly(P < 0.01) increased with age from 1.25% ± 0.28% at 5 wk to 31.07% ± 0.48% at 8 wk to 51.69% ± 3.19% at 12 wk.The median fat droplet size also significantly(P < 0.01) increased with age,from 1.33(0.55-10.52) m at 5 wk,2.82(0.61-44.13) m at 8 wk and 6.34(0.66-81.83) m at 12 wk.The mean FD-ratio was 0.42 ± 0.11 at 5 wk,0.11 ± 0.05 at 8 wk,and 0.03 ± 0.02 at 12 wk.The FD-ratio was significantly lower at 12 wk than at 5 wk and 8 wk(P < 0.01).A significant negative correlation was observed between the FD-ratio and either the fat droplet area(r =-0.7211,P = 0.0017) or fat droplet size(r =-0.9811,P = 0.0052).CONCLUSION:This tool for statistical analysis of signals from ultrasonography using the FD-ratio can be used to accurately quantify fat in vivo in an animal model of hepatic steatosis,and may serve as a quantitative biomarker of hepatic steatosis.展开更多
The human pregnane X receptor(hPXR) plays a critical role in the metabolism, transport and clearance of xenobiotics in the liver and intestine. The hPXR can be activated by a structurally diverse of drugs to initiat...The human pregnane X receptor(hPXR) plays a critical role in the metabolism, transport and clearance of xenobiotics in the liver and intestine. The hPXR can be activated by a structurally diverse of drugs to initiate clinically relevant drug-drug interactions. In this article, in silico investigation was performed on a structurally diverse set of drugs to identify critical structural features greatly related to their agonist activity towards h PXR. Heuristic method(HM)-Best Subset Modeling(BSM) and HM-Polynomial Neural Networks(PNN) were utilized to develop the linear and non-linear quantitative structure-activity relationship models. The applicability domain(AD) of the models was assessed by Williams plot. Statistically reliable models with good predictive power and explain were achieved(for HM-BSM, r^2=0.881, q^2_(LOO)=0.797, q^2_(EXT)=0.674; for HM-PNN, r^2=0.882, q^2_(LOO)=0.856, q^2_(EXT)=0.655). The developed models indicated that molecular aromatic and electric property, molecular weight and complexity may govern agonist activity of a structurally diverse set of drugs to h PXR.展开更多
基金supported by the Chinese Scholarship Council under Grant 202106910006.
文摘Branch angles are an important plant morphological trait affecting light interception within forest canopies.However,studies on branch angles have been limited due to the time-consuming nature of manual measurements using a protractor.Terrestrial laser scanning(TLS),however,provides new opportunities to measure branch angles more efficiently.Despite this potential,studies validating branch angle measurements from TLS have been limited.Here,our aim is to evaluate both manual and automatic branch angle measurements of European beech from TLS data using traditional field-measurements with a protractor as a reference.We evaluated the accuracy of branch angle measurements based on four automated algorithms(aRchiQSM,TreeQSM,Laplacian,SemanticLaplacian)from TLS data.Additionally,we assessed different ways of manual branch angle measurements in the field.Our study was based on a dataset comprising 124 branch angles measured from six European beech in a European deciduous forest.Our results show that manual branch angle measurements from TLS data are in high agreement with the reference(root-mean-squared error,RMSE:[3.57°-4.18°],concordance correlation coefficient,CCC:[0.950.97])across different branch length positions.Automated algorithms also are in high agreement with the reference although RMSE is approximately twice as large compared to manual branch angle measurements from TLS(RMSE:[9.29°-10.55°],CCC:[0.830.86])with manual leaf points removal.When applying the automatic wood-leaf separation algorithm,the performance of the four methods declined significantly,with only approximately 20 branch angles successfully identified.Moreover,it is important to note that there is no influence of the measurement position(branch surface versus center)for branch angle measurements.However,for curved branches,the selection of branch measurement length significantly impacts the branch angle measurement.This study provides a comprehensive understanding of branch angle measurements in forests.We show that automated measurement methods based on TLS data of branch angles are a valuable tool to quantify branch angles at larger scales.
基金LG was funded by the German Research Foundation(DFG 320926971)through the project“Analysis of diversity effects on above-groundproductivity in forests:advancing the mechanistic understanding of spatiotemporal dynamics in canopy space filling using mobile laser scanning”。
文摘Background:Species-specific genotypic features,local neighbourhood interactions and resource supply strongly influence the tree stature and growth rate.In mixed-species forests,diversity-mediated biomass allocation has been suggested to be a fundamental mechanism underlying the positive biodiversity-productivity relationships.Empirical evidence,however,is rare about the impact of local neighbourhood diversity on tree characteristics analysed at a very high level of detail.To address this issue we analysed these effects on the individual-tree crown architecture and tree productivity in a mature mixed forest in northern Germany.Methods:Our analysis considers multiple target tree species across a local neighbourhood species richness gradient ranging from 1 to 4.We applied terrestrial laser scanning to quantify a large number of individual mature trees(N=920)at very high accuracy.We evaluated two different neighbour inclusion approaches by analysing both a fixed radius selection procedure and a selection based on overlapping crowns.Results and conclusions:We show that local neighbourhood species diversity significantly increases crown dimension and wood volume of target trees.Moreover,we found a size-dependency of diversity effects on tree productivity(basal area and wood volume increment)with positive effects for large-sized trees(diameter at breast height(DBH)>40 cm)and negative effects for small-sized(DBH<40 cm)trees.In our analysis,the neighbour inclusion approach has a significant impact on the outcome.For scientific studies and the validation of growth models we recommend a neighbour selection by overlapping crowns,because this seems to be the relevant scale at which local neighbourhood interactions occur.Because local neighbourhood diversity promotes individual-tree productivity in mature European mixed-species forests,we conclude that a small-scale species mixture should be considered in management plans.
文摘AIM:To use leptin-deficient(ob/ob) mice with demonstrated differences in steatosis levels to test a new diagnostic method using the acoustical structure quantification(ASQ) mode and the associated analytical parameter,"focal disturbance ratio"(FD-ratio).METHODS:Nine ob/ob mice,at 5,8,and 12 wk of age(n = 3 in each age group),were used as models for hepatic steatosis.Echo signals obtained from ultrasonography in the mice were analyzed by ASQ,which uses a statistical analysis of echo amplitude to estimate inhomogeneity in the diagnostic region.FD-ratio,as calculated from this analysis,was the focus of the present study.FD-ratio and fat droplet areas and sizes were compared between age groups.RESULTS:No fibrosis or inflammation was observed in any of the groups.The fat droplet area significantly(P < 0.01) increased with age from 1.25% ± 0.28% at 5 wk to 31.07% ± 0.48% at 8 wk to 51.69% ± 3.19% at 12 wk.The median fat droplet size also significantly(P < 0.01) increased with age,from 1.33(0.55-10.52) m at 5 wk,2.82(0.61-44.13) m at 8 wk and 6.34(0.66-81.83) m at 12 wk.The mean FD-ratio was 0.42 ± 0.11 at 5 wk,0.11 ± 0.05 at 8 wk,and 0.03 ± 0.02 at 12 wk.The FD-ratio was significantly lower at 12 wk than at 5 wk and 8 wk(P < 0.01).A significant negative correlation was observed between the FD-ratio and either the fat droplet area(r =-0.7211,P = 0.0017) or fat droplet size(r =-0.9811,P = 0.0052).CONCLUSION:This tool for statistical analysis of signals from ultrasonography using the FD-ratio can be used to accurately quantify fat in vivo in an animal model of hepatic steatosis,and may serve as a quantitative biomarker of hepatic steatosis.
基金supported by grants from the Natural Science Research Project of Institution of Higher Education of Jiangsu Province(No.11KJB180006)National Natural Science Foundation of China(No.21277074 and No.81302458)
文摘The human pregnane X receptor(hPXR) plays a critical role in the metabolism, transport and clearance of xenobiotics in the liver and intestine. The hPXR can be activated by a structurally diverse of drugs to initiate clinically relevant drug-drug interactions. In this article, in silico investigation was performed on a structurally diverse set of drugs to identify critical structural features greatly related to their agonist activity towards h PXR. Heuristic method(HM)-Best Subset Modeling(BSM) and HM-Polynomial Neural Networks(PNN) were utilized to develop the linear and non-linear quantitative structure-activity relationship models. The applicability domain(AD) of the models was assessed by Williams plot. Statistically reliable models with good predictive power and explain were achieved(for HM-BSM, r^2=0.881, q^2_(LOO)=0.797, q^2_(EXT)=0.674; for HM-PNN, r^2=0.882, q^2_(LOO)=0.856, q^2_(EXT)=0.655). The developed models indicated that molecular aromatic and electric property, molecular weight and complexity may govern agonist activity of a structurally diverse set of drugs to h PXR.