Since the features of low energy consumption and limited power supply are very impor- tant for wireless sensor networks (WSNs), the problems of distributed state estimation with quan- tized innovations are investiga...Since the features of low energy consumption and limited power supply are very impor- tant for wireless sensor networks (WSNs), the problems of distributed state estimation with quan- tized innovations are investigated in this paper. In the first place, the assumptions of prior and posterior probability density function (PDF) with quantized innovations in the previous papers are analyzed. After that, an innovative Gaussian mixture estimator is proposed. On this basis, this paper presents a Gaussian mixture state estimation algorithm based on quantized innovations for WSNs. In order to evaluate and compare the performance of this kind of state estimation algo- rithms for WSNs, the posterior Cram6r-Rao lower bound (CRLB) with quantized innovations is put forward. Performance analysis and simulations show that the proposed Gaussian mixture state estimation algorithm is efficient than the others under the same number of quantization levels and the performance of these algorithms can be benchmarked by the theoretical lower bound.展开更多
基金jointly supported by the National Natural Science Foundation of China(No.61175008)State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System of China(No.CEMEE2014K0301A)the Natural Science Foundation of Jiangsu Province of China(No.BK20140896)
文摘Since the features of low energy consumption and limited power supply are very impor- tant for wireless sensor networks (WSNs), the problems of distributed state estimation with quan- tized innovations are investigated in this paper. In the first place, the assumptions of prior and posterior probability density function (PDF) with quantized innovations in the previous papers are analyzed. After that, an innovative Gaussian mixture estimator is proposed. On this basis, this paper presents a Gaussian mixture state estimation algorithm based on quantized innovations for WSNs. In order to evaluate and compare the performance of this kind of state estimation algo- rithms for WSNs, the posterior Cram6r-Rao lower bound (CRLB) with quantized innovations is put forward. Performance analysis and simulations show that the proposed Gaussian mixture state estimation algorithm is efficient than the others under the same number of quantization levels and the performance of these algorithms can be benchmarked by the theoretical lower bound.