In the paper we derive new solutions for the discrete and continuous Schwarzian Korteweg–de Vries(SKd V)equations.These solutions are characterized by trigonometric functions as backgrounds.For the discrete SKd V equ...In the paper we derive new solutions for the discrete and continuous Schwarzian Korteweg–de Vries(SKd V)equations.These solutions are characterized by trigonometric functions as backgrounds.For the discrete SKd V equation,its solutions are derived by using trigonometric function seeds and B?cklund transformation.Solutions for the continuous SKd V equation are obtained by taking continuum limits.展开更多
Based on sine and cosine functions, the compactly supported orthogonal wavelet filter coefficients with arbitrary length are constructed for the first time. When N = 2(k-1) and N = 2k, the unified analytic constructio...Based on sine and cosine functions, the compactly supported orthogonal wavelet filter coefficients with arbitrary length are constructed for the first time. When N = 2(k-1) and N = 2k, the unified analytic constructions of orthogonal wavelet filters are put forward, respectively. The famous Daubechies filter and some other well-known wavelet filters are tested by the proposed novel method which is very useful for wavelet theory research and many application areas such as pattern recognition.展开更多
A numerical technique is presented for solving integration operator of Green’s function. The approach is based on Hermite trigonometric scaling function on [0,2π], which is constructed for Hermite interpolation. The...A numerical technique is presented for solving integration operator of Green’s function. The approach is based on Hermite trigonometric scaling function on [0,2π], which is constructed for Hermite interpolation. The operational matrices of derivative for trigonometric scaling function are presented and utilized to reduce the solution of the problem. One test problem is presented and errors plots show the efficiency of the proposed technique for the studied problem.展开更多
The aim of this paper is to prove that the average function of a trigonometrically ρ-convex function is trigonometrically ρ-convex. Furthermore, we show the existence of support curves implies the trigonometric ρ-c...The aim of this paper is to prove that the average function of a trigonometrically ρ-convex function is trigonometrically ρ-convex. Furthermore, we show the existence of support curves implies the trigonometric ρ-convexity, and prove an extremum property of this function.展开更多
This paper presents an interpolation-based method(IBM)for approximating some trigonometric functions or their integrals as well.It provides two-sided bounds for each function,which also achieves much better approximat...This paper presents an interpolation-based method(IBM)for approximating some trigonometric functions or their integrals as well.It provides two-sided bounds for each function,which also achieves much better approximation effects than those of prevailing methods.In principle,the IBM can be applied for bounding more bounded smooth functions and their integrals as well,and its applications include approximating the integral of sin(x)/x function and improving the famous square root inequalities.展开更多
The classical example of no-where differentiable but everywhere continuous function is Weierstrass function. In this paper we have defined fractional order Weierstrass function in terms of Jumarie fractional trigonome...The classical example of no-where differentiable but everywhere continuous function is Weierstrass function. In this paper we have defined fractional order Weierstrass function in terms of Jumarie fractional trigonometric functions. The H?lder exponent and Box dimension of this new function have been evaluated here. It has been established that the values of H?lder exponent and Box dimension of this fractional order Weierstrass function are the same as in the original Weierstrass function. This new development in generalizing the classical Weierstrass function by use of fractional trigonometric function analysis and fractional derivative of fractional Weierstrass function by Jumarie fractional derivative, establishes that roughness indices are invariant to this generalization.展开更多
In this paper,we study asymptotic power series of the composition f(x)=h(g(x)),where g(x)=∑_(n=0)^(∞)b_(n)x^(-n),b_(n)∈R,and h is a given elementary function.The asymptotic expansions have been obtained for the com...In this paper,we study asymptotic power series of the composition f(x)=h(g(x)),where g(x)=∑_(n=0)^(∞)b_(n)x^(-n),b_(n)∈R,and h is a given elementary function.The asymptotic expansions have been obtained for the composition with an exponential or logarithmic function.Using the re-cursive method,we present the asymptotic expansions for the composition with seven trigonometric functions,respectively.As an application,the asymptotic expansions of roots of some equations are given.Computational results show that our recursive formula is more efficient than the method of Lagrange's inverse theorem.展开更多
An extended Jacobian elliptic function expansion method presented recently by us is applied to the mKdVequation such that thirteen families of Jacobian elliptic function solutions including both new solutions and Fu...An extended Jacobian elliptic function expansion method presented recently by us is applied to the mKdVequation such that thirteen families of Jacobian elliptic function solutions including both new solutions and Fu's allresults are obtained. When the modulus m → 1 or 0, we can find the corresponding six solitary wave solutions and sixtrigonometric function solutions. This shows that our method is more powerful to construct more exact Jacobian ellipticfunction solutions and can be applied to other nonlinear differential equations.展开更多
A trigonometric series expansion method and two similar modified methods for the Orr-Sommerfeld equation are presented. These methods use the trigonometric series expansion with an auxiliary function added to the high...A trigonometric series expansion method and two similar modified methods for the Orr-Sommerfeld equation are presented. These methods use the trigonometric series expansion with an auxiliary function added to the highest order derivative of the unknown function and generate the lower order derivatives through successive integra- tions. The proposed methods are easy to implement because of the simplicity of the chosen basis functions. By solving the plane Poiseuille flow (PPF), plane Couette flow (PCF), and Blasius boundary layer flow with several homogeneous boundary conditions, it is shown that these methods yield results with the same accuracy as that given by the conventional Chebyshev collocation method but with better robustness, and that ob- tained by the finite difference method but with fewer modal number.展开更多
In this paper, we have successfully extended the Jacobian elliptic function expansion approach to nonlinear differential-difference equations. The Hybrid lattice equation is chosen to illustrate this approach. As a co...In this paper, we have successfully extended the Jacobian elliptic function expansion approach to nonlinear differential-difference equations. The Hybrid lattice equation is chosen to illustrate this approach. As a consequence, twelve families of Jacobian elliptic function solutions with different parameters of the Hybrid lattice equation are obtained. When the modulus m → 1 or O, doubly-periodic solutions degenerate to solitonic solutions and trigonometric function solutions, respectively.展开更多
Suppose that a continuous 2re-periodic function f on the real axis changes its monotonicity at points Yi In this paper, for each n _ N, a trigonometric polynomial Pn of order cn is found such that: Pn has the same ...Suppose that a continuous 2re-periodic function f on the real axis changes its monotonicity at points Yi In this paper, for each n _ N, a trigonometric polynomial Pn of order cn is found such that: Pn has the same monotonicity as f, everywhere except, perhaps, the small intervals.展开更多
An approximate solution of the Dirac equation for a spin-1/2 particle under the influence of q-deformed hyperbolic P ¨oschl–Teller potential combined with trigonometric Scarf II non-central potential is studied ...An approximate solution of the Dirac equation for a spin-1/2 particle under the influence of q-deformed hyperbolic P ¨oschl–Teller potential combined with trigonometric Scarf II non-central potential is studied analytically. It is assumed that the scalar potential equals the vector potential in order to obtain analytical solutions. Both radial and angular parts of the Dirac equation are solved using the Nikiforov–Uvarov method. A relativistic energy spectrum and the relation between quantum numbers can be obtained using this method. Several quantum wave functions corresponding to several states are also presented in terms of the Jacobi Polynomials.展开更多
The purpose of this paper is to study the maximum trigonometric degree of the quadrature formula associated with m prescribed nodes and n unknown additional nodes in the interval(-π, π]. We show that for a fixed n,...The purpose of this paper is to study the maximum trigonometric degree of the quadrature formula associated with m prescribed nodes and n unknown additional nodes in the interval(-π, π]. We show that for a fixed n, the quadrature formulae with m and m + 1 prescribed nodes share the same maximum degree if m is odd. We also give necessary and sufficient conditions for all the additional nodes to be real, pairwise distinct and in the interval(-π, π] for even m, which can be obtained constructively. Some numerical examples are given by choosing the prescribed nodes to be the zeros of Chebyshev polynomials of the second kind or randomly for m ≥ 3.展开更多
基金supported by the NSF of China(Grant No.12271334)。
文摘In the paper we derive new solutions for the discrete and continuous Schwarzian Korteweg–de Vries(SKd V)equations.These solutions are characterized by trigonometric functions as backgrounds.For the discrete SKd V equation,its solutions are derived by using trigonometric function seeds and B?cklund transformation.Solutions for the continuous SKd V equation are obtained by taking continuum limits.
文摘Based on sine and cosine functions, the compactly supported orthogonal wavelet filter coefficients with arbitrary length are constructed for the first time. When N = 2(k-1) and N = 2k, the unified analytic constructions of orthogonal wavelet filters are put forward, respectively. The famous Daubechies filter and some other well-known wavelet filters are tested by the proposed novel method which is very useful for wavelet theory research and many application areas such as pattern recognition.
文摘A numerical technique is presented for solving integration operator of Green’s function. The approach is based on Hermite trigonometric scaling function on [0,2π], which is constructed for Hermite interpolation. The operational matrices of derivative for trigonometric scaling function are presented and utilized to reduce the solution of the problem. One test problem is presented and errors plots show the efficiency of the proposed technique for the studied problem.
文摘The aim of this paper is to prove that the average function of a trigonometrically ρ-convex function is trigonometrically ρ-convex. Furthermore, we show the existence of support curves implies the trigonometric ρ-convexity, and prove an extremum property of this function.
基金Supported by the National Natural Science Foundation of China(61672009,61502130).
文摘This paper presents an interpolation-based method(IBM)for approximating some trigonometric functions or their integrals as well.It provides two-sided bounds for each function,which also achieves much better approximation effects than those of prevailing methods.In principle,the IBM can be applied for bounding more bounded smooth functions and their integrals as well,and its applications include approximating the integral of sin(x)/x function and improving the famous square root inequalities.
基金Board of Research in Nuclear Science (BRNS), Department of Atomic Energy Government of India
文摘The classical example of no-where differentiable but everywhere continuous function is Weierstrass function. In this paper we have defined fractional order Weierstrass function in terms of Jumarie fractional trigonometric functions. The H?lder exponent and Box dimension of this new function have been evaluated here. It has been established that the values of H?lder exponent and Box dimension of this fractional order Weierstrass function are the same as in the original Weierstrass function. This new development in generalizing the classical Weierstrass function by use of fractional trigonometric function analysis and fractional derivative of fractional Weierstrass function by Jumarie fractional derivative, establishes that roughness indices are invariant to this generalization.
基金Supported by The Innovation Fund of Postgraduate,Sichuan University of Science&Engineering(Y2024336)NSF of Sichuan Province(2023NSFSC0065).
文摘In this paper,we study asymptotic power series of the composition f(x)=h(g(x)),where g(x)=∑_(n=0)^(∞)b_(n)x^(-n),b_(n)∈R,and h is a given elementary function.The asymptotic expansions have been obtained for the composition with an exponential or logarithmic function.Using the re-cursive method,we present the asymptotic expansions for the composition with seven trigonometric functions,respectively.As an application,the asymptotic expansions of roots of some equations are given.Computational results show that our recursive formula is more efficient than the method of Lagrange's inverse theorem.
文摘An extended Jacobian elliptic function expansion method presented recently by us is applied to the mKdVequation such that thirteen families of Jacobian elliptic function solutions including both new solutions and Fu's allresults are obtained. When the modulus m → 1 or 0, we can find the corresponding six solitary wave solutions and sixtrigonometric function solutions. This shows that our method is more powerful to construct more exact Jacobian ellipticfunction solutions and can be applied to other nonlinear differential equations.
基金supported by the National Natural Science Foundation of China(Nos.11221062,11521091,and 91752203)
文摘A trigonometric series expansion method and two similar modified methods for the Orr-Sommerfeld equation are presented. These methods use the trigonometric series expansion with an auxiliary function added to the highest order derivative of the unknown function and generate the lower order derivatives through successive integra- tions. The proposed methods are easy to implement because of the simplicity of the chosen basis functions. By solving the plane Poiseuille flow (PPF), plane Couette flow (PCF), and Blasius boundary layer flow with several homogeneous boundary conditions, it is shown that these methods yield results with the same accuracy as that given by the conventional Chebyshev collocation method but with better robustness, and that ob- tained by the finite difference method but with fewer modal number.
文摘In this paper, we have successfully extended the Jacobian elliptic function expansion approach to nonlinear differential-difference equations. The Hybrid lattice equation is chosen to illustrate this approach. As a consequence, twelve families of Jacobian elliptic function solutions with different parameters of the Hybrid lattice equation are obtained. When the modulus m → 1 or O, doubly-periodic solutions degenerate to solitonic solutions and trigonometric function solutions, respectively.
文摘Suppose that a continuous 2re-periodic function f on the real axis changes its monotonicity at points Yi In this paper, for each n _ N, a trigonometric polynomial Pn of order cn is found such that: Pn has the same monotonicity as f, everywhere except, perhaps, the small intervals.
文摘An approximate solution of the Dirac equation for a spin-1/2 particle under the influence of q-deformed hyperbolic P ¨oschl–Teller potential combined with trigonometric Scarf II non-central potential is studied analytically. It is assumed that the scalar potential equals the vector potential in order to obtain analytical solutions. Both radial and angular parts of the Dirac equation are solved using the Nikiforov–Uvarov method. A relativistic energy spectrum and the relation between quantum numbers can be obtained using this method. Several quantum wave functions corresponding to several states are also presented in terms of the Jacobi Polynomials.
基金The NSF (61033012,10801023,10911140268 and 10771028) of China
文摘The purpose of this paper is to study the maximum trigonometric degree of the quadrature formula associated with m prescribed nodes and n unknown additional nodes in the interval(-π, π]. We show that for a fixed n, the quadrature formulae with m and m + 1 prescribed nodes share the same maximum degree if m is odd. We also give necessary and sufficient conditions for all the additional nodes to be real, pairwise distinct and in the interval(-π, π] for even m, which can be obtained constructively. Some numerical examples are given by choosing the prescribed nodes to be the zeros of Chebyshev polynomials of the second kind or randomly for m ≥ 3.