High peak-to-average power ratio(PAPR)is the main disadvantage of visible light communication-based orthogonal frequency division multiplexing(VLC-OFDM)systems.To address this problem,a novel precoding method is propo...High peak-to-average power ratio(PAPR)is the main disadvantage of visible light communication-based orthogonal frequency division multiplexing(VLC-OFDM)systems.To address this problem,a novel precoding method is proposed in this paper.The complex-valued precoding matrix is constructed by a Vandermonde matrix.The researched results show the proposed precoding scheme has better PAPR performance when compared to the conventional real-valued precoding methods.Moreover,a general closed-form expression of bit error rate(BER)for Vandermonde precoded VLC-OFDM is derived for multipath fading channel.The obtained BER formula shows that Vandermonde precoding can improve the BER performance of VLC-OFDM system over multipath fading channel.This is verified by the simulation results.The researched results also show that different precoding schemes have the same BER performance but different PAPR performance.展开更多
Precodings using square-root decomposition,including Cholesky and G-To-Minus-Half(GTMH)precodings,are promising for eliminating the Faster-Than-Nyquist(FTN)-induced Intersymbol-Interference(ISI).However,the existing p...Precodings using square-root decomposition,including Cholesky and G-To-Minus-Half(GTMH)precodings,are promising for eliminating the Faster-Than-Nyquist(FTN)-induced Intersymbol-Interference(ISI).However,the existing precodings using square-root decomposition either ignore Interblock-Interference(IBI)or increase the signal power,deteriorating the Bit Error Rate(BER)performance for high-order modulations and severe ISI.To overcome these drawbacks,we adopt two approaches for constructing the circular ISI matrix.The first approach inserts a Cyclic Prefix/Suffix(CPS)after each precoded symbol block,while the second approach replaces the linear convolution of the FTN shaping and the matched filter by the circular convolution,resulting in the Circular FTN(CFTN).Using these two approaches,we propose three IBI-free precodings,i.e.,CPS-Cholesky,CFTN-Cholesky and CFTN-GTMH precodings.Furthermore,employing QR decomposition shows that the GTMH and Cholesky precodings can be converted interchangeably.Thus,we demonstrate that the GTMH precoding is essentially equivalent to the Cholesky precoding.Simulation results indicate that the BER performance of three IBI-free precodings approaches Nyquist performance for moderate ISI.However,as ISI intensifies,the CPS-Cholesky scheme increases the transmit power,causing BER performance degradation.In contrast,the CFTN-Cholesky and CFTN-GTMH precodings maintain optimal BER performance even for severe ISI.Considering 128-amplitude phase shift keying with a code rate of 1/2,the BER loss of CFTN-Cholesky and CFTN-GTMH precodings for the ideal BER of 10-5 is approximately 0.002 dB and 0.005 dB when packing factor is 0.7 and roll-offfactor is 0.3.To the best knowledge of the authors,this is the optimal performance achievable through precoding.展开更多
Existing Generalized Receive Spatial Modulation(GRSM)with Symbol-Level Precoding(SLP)forces the received signals(excluding noise)at unintended antennas to be zero,which restricts the generation of strong constructive ...Existing Generalized Receive Spatial Modulation(GRSM)with Symbol-Level Precoding(SLP)forces the received signals(excluding noise)at unintended antennas to be zero,which restricts the generation of strong constructive interference to intended receive antennas and thus limits the performance improvement over conventional GRSM with Zero-Forcing(ZF)precoding.In this paper,we propose a novel GRSM-SLP scheme that relaxes the zero receive power constraint and achieves superior performance by integrating Intelligent Reflecting Surfaces(IRSs).Specifically,our advanced GRSM-RSLP jointly exploits SLP at the transmitter and passive beamforming at the IRS to maximize the power difference between intended and unintended receive antennas,where the received signals at unintended antennas are relaxed to lie in a sphere centered at origin with a preset radius that depends on the Signal-to-Noise Ratio(SNR)value.The precoding matrix and passive beamforming vectors are optimized alternately by considering both phase shift keying and quadrature amplitude modulation signaling.It is worth emphasizing that GRSM-RSLP is a universal solution,also applicable to systems without IRS,although it performs better in IRS-assisted systems.We finally conduct extensive simulations to prove the superiority of GRSM-RSLP over GRSM-ZF and GRSM-SLP.Simulation results show that the performance of GRSM-RSLP is significantly influenced by the number of unintended antennas,and the larger the number,the better its performance.In the best-case scenario,GRSM-RSLP can achieve SNR gains of up to 10.5 dB and 12.5 dB over GRSM-SLP and GRSM-ZF,respectively.展开更多
Compared to high-resolution digital-toanalog converters(DACs), deploying 1-bit DACs requires much less hardware complexity for a massive multi-user multiple-input multiple-output(MUMIMO) system. However, the feasible ...Compared to high-resolution digital-toanalog converters(DACs), deploying 1-bit DACs requires much less hardware complexity for a massive multi-user multiple-input multiple-output(MUMIMO) system. However, the feasible domain of a1-bit transmitting signal is non-continuous, and thus it is more challenging to exploit multi-user interference(MUI) by precoding. In this paper, to improve symbol decision accuracy, we investigate MUI exploitation 1-bit precoding methods for massive MU-MIMO systems under QAM modulations. Because MUIs may be constructive or destructive, we define a modified mean square error(MSE) metric for QAM constellations to jointly evaluate the effect of both MUIs and noise. Then, we model the 1-bit precoding optimization problems to minimize the sum modified MSE or the maximum modified MSE, where both the transmitting vector and receiving processing factor are optimization variables. Based on whether the receiving processing factor remains constant during the whole transmission block, two scenarios are taken into consideration. Referring to existing interference exploitation 1-bit precoding methods, we design efficient algorithms to solve the two modified MSE based problems.Compared to existing 1-bit precoding methods, our proposed methods provide better bit error rate performance, especially in more practical scenario Ⅱ(constant receiving processing factor in one block).展开更多
In millimeter wave(mmWave) multiple-input multiple-output(MIMO) systems, hybrid precoding has been widely used to overcome the severe propagation loss. In order to improve the spectrum efficiency with low complexity, ...In millimeter wave(mmWave) multiple-input multiple-output(MIMO) systems, hybrid precoding has been widely used to overcome the severe propagation loss. In order to improve the spectrum efficiency with low complexity, we propose a joint hybrid precoding algorithm for single-user mmWave MIMO systems in this paper. By using the concept of equivalent channel, the proposed algorithm skillfully utilizes the idea of alternating optimization to complete the design of RF precoder and combiner. Then, the baseband precoder and combiner are computed by calculating the singular value decomposition of the equivalent channel. Simulation results demonstrate that the proposed algorithm can achieve satisfactory performance with quite low complexity. Moreover, we investigate the effects of quantization on the analog components and find that the proposed scheme is effective even with coarse quantization.展开更多
In this paper, the performance of hybrid precoding is investigated for mmWave massive MIMO systems with different antenna arrays. The hybrid precoding with partially connected architecture (PCA) is adopted. The spectr...In this paper, the performance of hybrid precoding is investigated for mmWave massive MIMO systems with different antenna arrays. The hybrid precoding with partially connected architecture (PCA) is adopted. The spectral efficiency (SE) and received energy efficiency (EE) are investigated by considering four types of antenna arrays, including uniform linear array (ULA), uniform rectangular planar array (URPA), uniform hexagonal planar array (UHPA), and uniform circular planar array (UCPA), respectively. We focus on analysis at the antenna response vector and utilize the idea of orthogonal matching pursuit algorithm to seek the optimal hybrid precoder. Furthermore, the trade-off of precoding architectures is studied between SE and received EE. Simulation results show that if the uniform planar array antenna is more concentrated, the SE and receive EE will be higher. Considering SE and received EE, the performance of planar arrays outperform linear array. There exist different optimal radio-frequency chain numbers to maximize the SE for planar array and linear array. In addition, the PCA can achieve relatively higher received EE while the SE is close to the fully connected architecture and the full digital architecture.展开更多
Different from conventional cellular networks, a maritime communication base station(BS) has to cover a much wider area due to the limitation of available BS sites. Accordingly the performance of users far away from t...Different from conventional cellular networks, a maritime communication base station(BS) has to cover a much wider area due to the limitation of available BS sites. Accordingly the performance of users far away from the BS is poor in general. This renders the fairness among users a challenging issue for maritime communications. In this paper, we consider a practical massive MIMO maritime BS with hybrid digital and analog precoding. Only the large-scale channel state information at the transmitter(CSIT) is considered so as to reduce the implementation complexity and overhead of the system. On this basis, we address the problem of fairness-oriented precoding design. A max-min optimization problem is formulated and solved in an iterative way. Simulation results demonstrate that the proposed scheme performs much better than conventional hybrid precoding algorithms in terms of minimum achievable rate of all the users, for the typical three-ray maritime channel model.展开更多
Millimeter wave(mmWave) and large-scale multiple input multiple output(MIMO) are two emerging technologies in fifth-generation wireless communication systems. The power consumption and hardware cost of radio frequency...Millimeter wave(mmWave) and large-scale multiple input multiple output(MIMO) are two emerging technologies in fifth-generation wireless communication systems. The power consumption and hardware cost of radio frequency(RF) chains increase exponentially with the bit resolution of analog-to-digital converters(ADCs) and digital-to-analog converters(DACs). One promising solution is to employ few RF chains with low-bit ADCs and DACs. In this paper, we consider mmWave large-scale MIMO systems with low bits DACs and ADCs. Leveraging on the Bussgang theorem and the additive quantization noise model(AQNM), a closed-form expression of the achievable rate is derived to show the effect of the ADCs? and DACs? resolution. Moreover, an orthogonal matching pursuit(OMP) based hybrid precoding algorithm is proposed to increase the achievable rate. Our results show that the impact of DACs is more pronounced than the impact of ADCs. Furthermore, 5-bit ADCs and DACs are sufficient at the transceiver to operate without a significant performance loss.展开更多
Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the ...Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the complicated bit allocation to match the different signal-to-noise-ratios(SNRs) of different sub-channels. In this paper,we propose a geometric mean decomposition(GMD)-based hybrid precoding to avoid the complicated bit allocation. Specifically,we seek a pair of analog and digital precoders sufficiently close to the unconstrained fully digital GMD precoder. To achieve this, we fix the analog precoder to design the digital precoder, and vice versa. The analog precoder is designed based on the orthogonal matching pursuit(OMP) algorithm, while GMD is used to obtain the digital precoder. Simulations show that the proposed GMD-based hybrid precoding achieves better performance than the conventional SVD-based hybrid precoding with only a slight increase in complexity.展开更多
The life duration of underwater cooperative network has been the hot topic in recent years. And the problem of node energy consuming is the key technology to maintain the energy balance among all nodes. To ensure ener...The life duration of underwater cooperative network has been the hot topic in recent years. And the problem of node energy consuming is the key technology to maintain the energy balance among all nodes. To ensure energy efficiency of some special nodes and obtain a longer lifetime of the underwater cooperative network, this paper focuses on adopting precoding strategy to preprocess the signal at the transmitter and simplify the receiver structure. Meanwhile, it takes into account the presence of Doppler shifts and long feedback transmission delay in an underwater acoustic communication system. Precoding technique is applied based on channel prediction to realize energy saving and improve system performance. Different precoding methods are compared. Simulated results and experimental results show that the proposed scheme has a better performance, and it can provide a simple receiver and realize energy saving for some special nodes in a cooperative communication.展开更多
In device-to-device(D2D)underlay cellular networks with downlink spectrum sharing,massive MIMO seems promising as the large number of antennas at the base station(BS) can be utilized to suppress interference.However,t...In device-to-device(D2D)underlay cellular networks with downlink spectrum sharing,massive MIMO seems promising as the large number of antennas at the base station(BS) can be utilized to suppress interference.However,the channel state information(CSI) from the BS to D2D receivers is required to obtain this advantage.In this paper,we first propose a novel time division duplex(TDD) scheme for D2D users to acquire this CSI,without additional pilot overhead.Moreover,we propose an interference-aware MMSE precoder utilizing the acquired CSI from the BS to not only cellular users but also D2D users to suppress the cellular-to-D2D interference.Simulation results show that our proposed TDD scheme and precoder can significantly improve the achievable sum spectral efficiency(SE) and D2D SE,compared to the classical MMSE precoder.Compared with the interferenceaware ZF precoder,whose performance severely degrades for large user numbers,our proposed interference-aware MMSE precoder can always guarantees a high and stable performance in terms of achievable SE.展开更多
In order to reduce the feedback load of multi-user orthogonal frequency division multiplexing ( OFDM ) -based wireless systems, a practiral limited bits feedback precoding algorithm is proposed with direct source-de...In order to reduce the feedback load of multi-user orthogonal frequency division multiplexing ( OFDM ) -based wireless systems, a practiral limited bits feedback precoding algorithm is proposed with direct source-destination link based on amplify-and- forward cooperative relay network under frequency selective fading channels. Using joint minimum mean square error(MMSE) filter, the receiving decoding matrix is designed for each user in the paper. Source precoding (beamforming) matrix is optimized with convex function of weight mean square error (MSE). Relay precoding matrix is obtained under MSE decomposition and convex optimization. The precoding matrix index is fed back for clustered subcarrier of OFDM with limited feedback. Then using interpolation algorithm, all precoding matrices are achieved at base station (BS) and relay nodes. Simulations indicate the effectiveness of the proposed limited feedback joint precoding and beam_formlng design. The proposed method can improve bit error rate (BER) performance and obtain better sum-rate performance in contrast to existing algorithms. It displays the BER performance is close to that of the unquantified precoding feedback method.展开更多
Due to the different signal-to-noise ratio(SNR)of each subchannel,the bit error rate(BER)of hybrid precoding based on singular value decomposition(SVD)decreases.In this paper,we propose a multi-task learning based pre...Due to the different signal-to-noise ratio(SNR)of each subchannel,the bit error rate(BER)of hybrid precoding based on singular value decomposition(SVD)decreases.In this paper,we propose a multi-task learning based precoding network(PN)model to solve the BER loss problem caused by SVD based hybrid precoding under imperfect channel state information(CSI).Specifically,we firstly generate a dataset including imcomplete CSI input channel matrix and corresponding output labels to train the PN model.The output labels are designed based on uniform channel decomposition(UCD)which decomposes the channel into multiple subchannels with same gain,while the vertical-bell layered space-time structure(V-BLAST)signal processing technology is combined to eliminate the inner interference of the subchannels.Then,the PN model is trained to design the analog and digital precoding/combining matrix simultaneous.Simulation results show that the proposed scheme has only negligible gap in spectrum efficiency compared with the fully digital precoding,while achieves better BER performance than SVD based hybrid precoding.展开更多
The lattice-reduction (LR) has been developed to im- prove the performance of the zero-forcing (ZF) precoder in multiple input multiple output (MIMO) systems. Under the assumptions of uncorrelated flat fading ch...The lattice-reduction (LR) has been developed to im- prove the performance of the zero-forcing (ZF) precoder in multiple input multiple output (MIMO) systems. Under the assumptions of uncorrelated flat fading channel model and perfect channel state information at the transmitter (CSIT), an LR-aided ZF precoder is able to collect the full transmit diversity. With the complex Lenstra- Lenstra-Lov^sz (LLL) algorithm and limited feedforward structure, an LR-aided linear minimum-mean-square-error (LMMSE) pre- coder for spatial correlated MIMO channels and imperfect CSIT is proposed to achieve lower bit error rate (BER). Assuming a time division duplexing (TDD) MIMO system, correlated block flat fad- ing channel and LMMSE uplink channel estimator, it is proved that the proposed LR-aided LMMSE precoder can also obtain the full transmit diversity through an analytical approach. Furthermore, the simulation results show that with the quadrature phase shift keying (QPSK) modulation at the transmitter, the uncoded and coded BERs of the LR-aided LMMSE precoder are lower than that of the traditional LMMSE precoder respectively when Eb-No is greater than 10 dB and 12 dB at all correlation coefficients.展开更多
Massive multiple-input multiple-output provides improved energy efficiency and spectral efficiency in 5 G. However it requires large-scale matrix computation with tremendous complexity, especially for data detection a...Massive multiple-input multiple-output provides improved energy efficiency and spectral efficiency in 5 G. However it requires large-scale matrix computation with tremendous complexity, especially for data detection and precoding. Recently, many detection and precoding methods were proposed using approximate iteration methods, which meet the demand of precision with low complexity. In this paper, we compare these approximate iteration methods in precision and complexity, and then improve these methods with iteration refinement at the cost of little complexity and no extra hardware resource. By derivation, our proposal is a combination of three approximate iteration methods in essence and provides remarkable precision improvement on desired vectors. The results show that our proposal provides 27%-83% normalized mean-squared error improvement of the detection symbol vector and precoding symbol vector. Moreover, we find the bit-error rate is mainly controlled by soft-input soft-output Viterbi decoding when using approximate iteration methods. Further, only considering the effect on soft-input soft-output Viterbi decoding, the simulation results show that using a rough estimation for the filter matrix of minimum mean square error detection to calculating log-likelihood ratio could provideenough good bit-error rate performance, especially when the ratio of base station antennas number and the users number is not too large.展开更多
This paper discusses the blind carrier frequency offset (CFO) estimation for orthogonal frequency division multiplexing (OFDM) systems by utilizing trilinear decomposition and genera- lized preceding. Firstly, the...This paper discusses the blind carrier frequency offset (CFO) estimation for orthogonal frequency division multiplexing (OFDM) systems by utilizing trilinear decomposition and genera- lized preceding. Firstly, the generalized precoding is employed to obtain multiple covariance matrices which are requisite for the trilinear model, and then a novel CFO estimation algorithm is proposed for the OFDM system. Compared with both the joint diagonalizer and estimation of signal parameters via rotational invariant technique (ESPRIT), the proposed algorithm enjoys a better CFO estimation performance. Furthermore, the proposed algorithm can work well without virtual carriers. Simulation results illustrate the performance of this algorithm,展开更多
This paper analyses of the outage probability and the achievable rate of massive multi-input-multi-output(MIMO) systems, in which the base station(BS) is equipped with digital-to-analog-converters(DACs) of mixed-level...This paper analyses of the outage probability and the achievable rate of massive multi-input-multi-output(MIMO) systems, in which the base station(BS) is equipped with digital-to-analog-converters(DACs) of mixed-level resolution. And the matched-filter(MF) precoding is used on the BS. Closedform expressions are derived by the distribution of user-interference power and other statistical properties in the signal-to-interference-plus-noise-ratio. Then, the combination of mixed-DACs resolution profile is chosen about outage probability and achievable rate with the BS energy consumption. And the resolution configurations between the outage probability and the achievable rate and the BS energy consumption are given. Meanwhile, Effects of related parameters and channel errors are analysed about outage probability and achievable rate. The numerical results show that the correctness of the formula derivations. As the number of users increases the system's achievable rate increases and the outage probability decreases. The selected resolution configuration system has better comprehensive performance.展开更多
In ultra-dense networks (UDN), the local precoding scheme for time-division duplex coordinated multiple point transmission (TDD-CoMP) can have a good performance with no feedback by using reciprocity between uplin...In ultra-dense networks (UDN), the local precoding scheme for time-division duplex coordinated multiple point transmission (TDD-CoMP) can have a good performance with no feedback by using reciprocity between uplink and dovallink. However, if channel is time-varying, the channel difference would cause codeword mismatch between transmitter and receiver, which leads to performance degradation. In this paper, a linear interpolation method is proposed for TDD-CoMP system to estimate the uplink channel at the receiver, which would reduce the channel difference caused by time delay and decrease the probability of codeword mismatch between both sides. Moreover, to mitigate severe inter-cell interference and increase the coverage and throughput of celledge users in UDN, a two-codebook scheme is used to strengthen cooperation between base stations (BSs), which can outperform the global precoding scheme with less overhead. Simulations show that the proposed scheme can significantly improve the link performance compared to the global precoding scheme.展开更多
MIMO technique can provide higher information throughput and transmission reliability for the PLC system.However,the MIMO-PLC system based on three-conductor cable has a high correlation among its sub-channels.Spatial...MIMO technique can provide higher information throughput and transmission reliability for the PLC system.However,the MIMO-PLC system based on three-conductor cable has a high correlation among its sub-channels.Spatial multiplexing technology will be affected by the spatial correlation between MIMO-PLC sub-channels.To reduce the system bit error rate caused by MIMO-PLC correlation among sub-channels,this paper proposed a phase rotation precoding scheme for the 2×2 closed-loop MIMO-PLC system.According to the channel transfer function of high correlation MIMO-PLC system,the phase rotation precoding matrix F is calculated,and the transmission signal matrix S is modulated with the F,the code distance at the receiving point with smallest code distance is increased by phase rotation.Simulation results show that the scheme can effectively reduce the bit error rate of the 2×2 MIMO-PLC system based on ML detection,and significantly improve the system performance.展开更多
An optimal linear precoding scheme based on Particle Swarm Optimization(PSO),which aims to maximize the system capacity of the cooperative transmission in the downlink channel,is proposed for a multicell multiuser sin...An optimal linear precoding scheme based on Particle Swarm Optimization(PSO),which aims to maximize the system capacity of the cooperative transmission in the downlink channel,is proposed for a multicell multiuser single input single output system.With such a scheme,the optimal precoding vector could be easily searched for each user according to a simplified objective function.Simulation results show that the proposed scheme can obtain larger average spectrum efficiency and a better Bit Error Rate(BER) performance than Zero Forcing(ZF) and Minimum Mean Square Error(MMSE) algorithm.展开更多
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LZ21F010001)the Natural Science Foundation of Zhejiang University of Science and Technology(No.2023QN095)。
文摘High peak-to-average power ratio(PAPR)is the main disadvantage of visible light communication-based orthogonal frequency division multiplexing(VLC-OFDM)systems.To address this problem,a novel precoding method is proposed in this paper.The complex-valued precoding matrix is constructed by a Vandermonde matrix.The researched results show the proposed precoding scheme has better PAPR performance when compared to the conventional real-valued precoding methods.Moreover,a general closed-form expression of bit error rate(BER)for Vandermonde precoded VLC-OFDM is derived for multipath fading channel.The obtained BER formula shows that Vandermonde precoding can improve the BER performance of VLC-OFDM system over multipath fading channel.This is verified by the simulation results.The researched results also show that different precoding schemes have the same BER performance but different PAPR performance.
基金supported in part by National Natural Science Foundation of China under Grants 62071002 and 62471004in part by"Double First-Class"Discipline Creation Project of Surveying Science and Technology under Grants CHXKYXBS03 and GCCRC202306+1 种基金in part by Anhui Provincial Natural Science Foundation under Grant 2408085QF207in part by Anhui Provincial University Distinguished Research and Innovation Team Foundation under Grant 2024AH010003.
文摘Precodings using square-root decomposition,including Cholesky and G-To-Minus-Half(GTMH)precodings,are promising for eliminating the Faster-Than-Nyquist(FTN)-induced Intersymbol-Interference(ISI).However,the existing precodings using square-root decomposition either ignore Interblock-Interference(IBI)or increase the signal power,deteriorating the Bit Error Rate(BER)performance for high-order modulations and severe ISI.To overcome these drawbacks,we adopt two approaches for constructing the circular ISI matrix.The first approach inserts a Cyclic Prefix/Suffix(CPS)after each precoded symbol block,while the second approach replaces the linear convolution of the FTN shaping and the matched filter by the circular convolution,resulting in the Circular FTN(CFTN).Using these two approaches,we propose three IBI-free precodings,i.e.,CPS-Cholesky,CFTN-Cholesky and CFTN-GTMH precodings.Furthermore,employing QR decomposition shows that the GTMH and Cholesky precodings can be converted interchangeably.Thus,we demonstrate that the GTMH precoding is essentially equivalent to the Cholesky precoding.Simulation results indicate that the BER performance of three IBI-free precodings approaches Nyquist performance for moderate ISI.However,as ISI intensifies,the CPS-Cholesky scheme increases the transmit power,causing BER performance degradation.In contrast,the CFTN-Cholesky and CFTN-GTMH precodings maintain optimal BER performance even for severe ISI.Considering 128-amplitude phase shift keying with a code rate of 1/2,the BER loss of CFTN-Cholesky and CFTN-GTMH precodings for the ideal BER of 10-5 is approximately 0.002 dB and 0.005 dB when packing factor is 0.7 and roll-offfactor is 0.3.To the best knowledge of the authors,this is the optimal performance achievable through precoding.
基金supported in part by the National Key R&D Program of China under Grant 2023YFB2904500in part by the National Natural Science Foundation of China under Grant 62471183in part by the Fundamental Research Funds for the Central Universities under Grant 2024ZYGXZR076.
文摘Existing Generalized Receive Spatial Modulation(GRSM)with Symbol-Level Precoding(SLP)forces the received signals(excluding noise)at unintended antennas to be zero,which restricts the generation of strong constructive interference to intended receive antennas and thus limits the performance improvement over conventional GRSM with Zero-Forcing(ZF)precoding.In this paper,we propose a novel GRSM-SLP scheme that relaxes the zero receive power constraint and achieves superior performance by integrating Intelligent Reflecting Surfaces(IRSs).Specifically,our advanced GRSM-RSLP jointly exploits SLP at the transmitter and passive beamforming at the IRS to maximize the power difference between intended and unintended receive antennas,where the received signals at unintended antennas are relaxed to lie in a sphere centered at origin with a preset radius that depends on the Signal-to-Noise Ratio(SNR)value.The precoding matrix and passive beamforming vectors are optimized alternately by considering both phase shift keying and quadrature amplitude modulation signaling.It is worth emphasizing that GRSM-RSLP is a universal solution,also applicable to systems without IRS,although it performs better in IRS-assisted systems.We finally conduct extensive simulations to prove the superiority of GRSM-RSLP over GRSM-ZF and GRSM-SLP.Simulation results show that the performance of GRSM-RSLP is significantly influenced by the number of unintended antennas,and the larger the number,the better its performance.In the best-case scenario,GRSM-RSLP can achieve SNR gains of up to 10.5 dB and 12.5 dB over GRSM-SLP and GRSM-ZF,respectively.
文摘Compared to high-resolution digital-toanalog converters(DACs), deploying 1-bit DACs requires much less hardware complexity for a massive multi-user multiple-input multiple-output(MUMIMO) system. However, the feasible domain of a1-bit transmitting signal is non-continuous, and thus it is more challenging to exploit multi-user interference(MUI) by precoding. In this paper, to improve symbol decision accuracy, we investigate MUI exploitation 1-bit precoding methods for massive MU-MIMO systems under QAM modulations. Because MUIs may be constructive or destructive, we define a modified mean square error(MSE) metric for QAM constellations to jointly evaluate the effect of both MUIs and noise. Then, we model the 1-bit precoding optimization problems to minimize the sum modified MSE or the maximum modified MSE, where both the transmitting vector and receiving processing factor are optimization variables. Based on whether the receiving processing factor remains constant during the whole transmission block, two scenarios are taken into consideration. Referring to existing interference exploitation 1-bit precoding methods, we design efficient algorithms to solve the two modified MSE based problems.Compared to existing 1-bit precoding methods, our proposed methods provide better bit error rate performance, especially in more practical scenario Ⅱ(constant receiving processing factor in one block).
基金supported by NSFC (No. 61571055)fund of SKL of MMW (No. K201815) Important National Science & Technology Specific Projects (2017ZX03001028)
文摘In millimeter wave(mmWave) multiple-input multiple-output(MIMO) systems, hybrid precoding has been widely used to overcome the severe propagation loss. In order to improve the spectrum efficiency with low complexity, we propose a joint hybrid precoding algorithm for single-user mmWave MIMO systems in this paper. By using the concept of equivalent channel, the proposed algorithm skillfully utilizes the idea of alternating optimization to complete the design of RF precoder and combiner. Then, the baseband precoder and combiner are computed by calculating the singular value decomposition of the equivalent channel. Simulation results demonstrate that the proposed algorithm can achieve satisfactory performance with quite low complexity. Moreover, we investigate the effects of quantization on the analog components and find that the proposed scheme is effective even with coarse quantization.
基金supported by the National Natural Science Foundation of China (No.61961018)the Jiangxi Province Foundation for Distinguished Young Scholar (No.20192BCB23013)+1 种基金the Jiangxi Province Natural Science Foundation of China (No.20171BAB202001, 20192ACB21003)the Science Program of Jiangxi Educational Committee (No.GJJ180307)
文摘In this paper, the performance of hybrid precoding is investigated for mmWave massive MIMO systems with different antenna arrays. The hybrid precoding with partially connected architecture (PCA) is adopted. The spectral efficiency (SE) and received energy efficiency (EE) are investigated by considering four types of antenna arrays, including uniform linear array (ULA), uniform rectangular planar array (URPA), uniform hexagonal planar array (UHPA), and uniform circular planar array (UCPA), respectively. We focus on analysis at the antenna response vector and utilize the idea of orthogonal matching pursuit algorithm to seek the optimal hybrid precoder. Furthermore, the trade-off of precoding architectures is studied between SE and received EE. Simulation results show that if the uniform planar array antenna is more concentrated, the SE and receive EE will be higher. Considering SE and received EE, the performance of planar arrays outperform linear array. There exist different optimal radio-frequency chain numbers to maximize the SE for planar array and linear array. In addition, the PCA can achieve relatively higher received EE while the SE is close to the fully connected architecture and the full digital architecture.
基金supported in part by the National Science Foundation of China under grant No. 91638205,grant No. 61771286, and grant No. 61701457, and grant No. 61621091
文摘Different from conventional cellular networks, a maritime communication base station(BS) has to cover a much wider area due to the limitation of available BS sites. Accordingly the performance of users far away from the BS is poor in general. This renders the fairness among users a challenging issue for maritime communications. In this paper, we consider a practical massive MIMO maritime BS with hybrid digital and analog precoding. Only the large-scale channel state information at the transmitter(CSIT) is considered so as to reduce the implementation complexity and overhead of the system. On this basis, we address the problem of fairness-oriented precoding design. A max-min optimization problem is formulated and solved in an iterative way. Simulation results demonstrate that the proposed scheme performs much better than conventional hybrid precoding algorithms in terms of minimum achievable rate of all the users, for the typical three-ray maritime channel model.
基金supported in part by the National Key R&D Program of China (No. 2016YFE0200900)Major Projects of Beijing Municipal Science and Technology Commission (No. Z181100003218010)+3 种基金National Natural Science Foundation of China (Nos. 61601020, 61725101 and U1834210)the Beijing Natural Science Foundation (Nos. 4182049, L171005 and L172020)the open research fund of National Mobile Communications Research Laboratory, Southeast University (No. 2018D04)Key Laboratory of Optical Communication and Networks (No. KLOCN2018002)
文摘Millimeter wave(mmWave) and large-scale multiple input multiple output(MIMO) are two emerging technologies in fifth-generation wireless communication systems. The power consumption and hardware cost of radio frequency(RF) chains increase exponentially with the bit resolution of analog-to-digital converters(ADCs) and digital-to-analog converters(DACs). One promising solution is to employ few RF chains with low-bit ADCs and DACs. In this paper, we consider mmWave large-scale MIMO systems with low bits DACs and ADCs. Leveraging on the Bussgang theorem and the additive quantization noise model(AQNM), a closed-form expression of the achievable rate is derived to show the effect of the ADCs? and DACs? resolution. Moreover, an orthogonal matching pursuit(OMP) based hybrid precoding algorithm is proposed to increase the achievable rate. Our results show that the impact of DACs is more pronounced than the impact of ADCs. Furthermore, 5-bit ADCs and DACs are sufficient at the transceiver to operate without a significant performance loss.
基金supported by the National Natural Science Foundation of China for Outstanding Young Scholars (Grant No. 61722109)the National Natural Science Foundation of China (Grant No. 61571270)the Royal Academy of Engineering through the UK–China Industry Academia Partnership Programme Scheme (Grant No. UK-CIAPP\49)
文摘Hybrid precoding can reduce the number of required radio frequency(RF)chains in millimeter-Wave(mmWave) massive MIMO systems. However, existing hybrid precoding based on singular value decomposition(SVD) requires the complicated bit allocation to match the different signal-to-noise-ratios(SNRs) of different sub-channels. In this paper,we propose a geometric mean decomposition(GMD)-based hybrid precoding to avoid the complicated bit allocation. Specifically,we seek a pair of analog and digital precoders sufficiently close to the unconstrained fully digital GMD precoder. To achieve this, we fix the analog precoder to design the digital precoder, and vice versa. The analog precoder is designed based on the orthogonal matching pursuit(OMP) algorithm, while GMD is used to obtain the digital precoder. Simulations show that the proposed GMD-based hybrid precoding achieves better performance than the conventional SVD-based hybrid precoding with only a slight increase in complexity.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.61471308,61671394 and61471309)the Foundation of Science and Technology on Underwater Acoustic Antagonizing Laboratory(Grant Nos.KK1QB3036J and KMB5492)
文摘The life duration of underwater cooperative network has been the hot topic in recent years. And the problem of node energy consuming is the key technology to maintain the energy balance among all nodes. To ensure energy efficiency of some special nodes and obtain a longer lifetime of the underwater cooperative network, this paper focuses on adopting precoding strategy to preprocess the signal at the transmitter and simplify the receiver structure. Meanwhile, it takes into account the presence of Doppler shifts and long feedback transmission delay in an underwater acoustic communication system. Precoding technique is applied based on channel prediction to realize energy saving and improve system performance. Different precoding methods are compared. Simulated results and experimental results show that the proposed scheme has a better performance, and it can provide a simple receiver and realize energy saving for some special nodes in a cooperative communication.
基金supported by National Basic Research Program of China under Grants No. 2013CB329002Science Fund for Creative Research Groups of NSFC under Grants No.61321061+3 种基金China's 863 Project under Grants No.2015AA01A706National Major Project under Grants No.2016ZX03001023-003Program for New Century Excellent Talents in University under Grants No.NCET-130321Tsinghua-Qualcomm Joint Research Program,and Tsinghua University Initiative Scientific Research Program under Grants No. 2011THZ02-2
文摘In device-to-device(D2D)underlay cellular networks with downlink spectrum sharing,massive MIMO seems promising as the large number of antennas at the base station(BS) can be utilized to suppress interference.However,the channel state information(CSI) from the BS to D2D receivers is required to obtain this advantage.In this paper,we first propose a novel time division duplex(TDD) scheme for D2D users to acquire this CSI,without additional pilot overhead.Moreover,we propose an interference-aware MMSE precoder utilizing the acquired CSI from the BS to not only cellular users but also D2D users to suppress the cellular-to-D2D interference.Simulation results show that our proposed TDD scheme and precoder can significantly improve the achievable sum spectral efficiency(SE) and D2D SE,compared to the classical MMSE precoder.Compared with the interferenceaware ZF precoder,whose performance severely degrades for large user numbers,our proposed interference-aware MMSE precoder can always guarantees a high and stable performance in terms of achievable SE.
基金National Natural Science Foundation of China-Guangdong,Guangdong-Hong Kong Key Projects of Science and Technology,China,University-Industry Key Project of Department of Education of Guangdong Province,China,National Natural Science Foundation of China
文摘In order to reduce the feedback load of multi-user orthogonal frequency division multiplexing ( OFDM ) -based wireless systems, a practiral limited bits feedback precoding algorithm is proposed with direct source-destination link based on amplify-and- forward cooperative relay network under frequency selective fading channels. Using joint minimum mean square error(MMSE) filter, the receiving decoding matrix is designed for each user in the paper. Source precoding (beamforming) matrix is optimized with convex function of weight mean square error (MSE). Relay precoding matrix is obtained under MSE decomposition and convex optimization. The precoding matrix index is fed back for clustered subcarrier of OFDM with limited feedback. Then using interpolation algorithm, all precoding matrices are achieved at base station (BS) and relay nodes. Simulations indicate the effectiveness of the proposed limited feedback joint precoding and beam_formlng design. The proposed method can improve bit error rate (BER) performance and obtain better sum-rate performance in contrast to existing algorithms. It displays the BER performance is close to that of the unquantified precoding feedback method.
基金supported by the National Natural Science Foundation of China under grant No.61379028 and No.61671483The Natural Science Foundation of Hubei province under grant No.2016CFA089+1 种基金The Fundamental Research Funds for the Central UniversitiesSouth-central University for Nationalities under grant NO.CZY19003。
文摘Due to the different signal-to-noise ratio(SNR)of each subchannel,the bit error rate(BER)of hybrid precoding based on singular value decomposition(SVD)decreases.In this paper,we propose a multi-task learning based precoding network(PN)model to solve the BER loss problem caused by SVD based hybrid precoding under imperfect channel state information(CSI).Specifically,we firstly generate a dataset including imcomplete CSI input channel matrix and corresponding output labels to train the PN model.The output labels are designed based on uniform channel decomposition(UCD)which decomposes the channel into multiple subchannels with same gain,while the vertical-bell layered space-time structure(V-BLAST)signal processing technology is combined to eliminate the inner interference of the subchannels.Then,the PN model is trained to design the analog and digital precoding/combining matrix simultaneous.Simulation results show that the proposed scheme has only negligible gap in spectrum efficiency compared with the fully digital precoding,while achieves better BER performance than SVD based hybrid precoding.
基金supported by the National Science Fund for Distinguished Young Scholars (60725105)the National Basic Research Program of China (2009CB320404)+4 种基金the Program for Changjiang Scholars and Innovative Research Team in University (IRT0852)the 111 Project(B08038)the National Natural Science Foundation of China (60702057)the Special Research Fund of State Key Laboratory (ISN1102003)the National Science and Technology Major Project (2011ZX03001-007-01)
文摘The lattice-reduction (LR) has been developed to im- prove the performance of the zero-forcing (ZF) precoder in multiple input multiple output (MIMO) systems. Under the assumptions of uncorrelated flat fading channel model and perfect channel state information at the transmitter (CSIT), an LR-aided ZF precoder is able to collect the full transmit diversity. With the complex Lenstra- Lenstra-Lov^sz (LLL) algorithm and limited feedforward structure, an LR-aided linear minimum-mean-square-error (LMMSE) pre- coder for spatial correlated MIMO channels and imperfect CSIT is proposed to achieve lower bit error rate (BER). Assuming a time division duplexing (TDD) MIMO system, correlated block flat fad- ing channel and LMMSE uplink channel estimator, it is proved that the proposed LR-aided LMMSE precoder can also obtain the full transmit diversity through an analytical approach. Furthermore, the simulation results show that with the quadrature phase shift keying (QPSK) modulation at the transmitter, the uncoded and coded BERs of the LR-aided LMMSE precoder are lower than that of the traditional LMMSE precoder respectively when Eb-No is greater than 10 dB and 12 dB at all correlation coefficients.
文摘Massive multiple-input multiple-output provides improved energy efficiency and spectral efficiency in 5 G. However it requires large-scale matrix computation with tremendous complexity, especially for data detection and precoding. Recently, many detection and precoding methods were proposed using approximate iteration methods, which meet the demand of precision with low complexity. In this paper, we compare these approximate iteration methods in precision and complexity, and then improve these methods with iteration refinement at the cost of little complexity and no extra hardware resource. By derivation, our proposal is a combination of three approximate iteration methods in essence and provides remarkable precision improvement on desired vectors. The results show that our proposal provides 27%-83% normalized mean-squared error improvement of the detection symbol vector and precoding symbol vector. Moreover, we find the bit-error rate is mainly controlled by soft-input soft-output Viterbi decoding when using approximate iteration methods. Further, only considering the effect on soft-input soft-output Viterbi decoding, the simulation results show that using a rough estimation for the filter matrix of minimum mean square error detection to calculating log-likelihood ratio could provideenough good bit-error rate performance, especially when the ratio of base station antennas number and the users number is not too large.
基金supported by the National Natural Science Foundation of China (60801052)the Aeronautical Science Foundation of China(2009ZC52036)+1 种基金Nanjing University of Aeronautics and Astronautics Research Funding (NS2012010 NP2011036)
文摘This paper discusses the blind carrier frequency offset (CFO) estimation for orthogonal frequency division multiplexing (OFDM) systems by utilizing trilinear decomposition and genera- lized preceding. Firstly, the generalized precoding is employed to obtain multiple covariance matrices which are requisite for the trilinear model, and then a novel CFO estimation algorithm is proposed for the OFDM system. Compared with both the joint diagonalizer and estimation of signal parameters via rotational invariant technique (ESPRIT), the proposed algorithm enjoys a better CFO estimation performance. Furthermore, the proposed algorithm can work well without virtual carriers. Simulation results illustrate the performance of this algorithm,
基金supported by the National Natural Science Foundation of China(No.61961018)the Jiangxi Province Foundation for Distinguished Young Scholar(No.20192BCB23013)the Jiangxi Province Natural Science Foundation of China(20192ACB21003)。
文摘This paper analyses of the outage probability and the achievable rate of massive multi-input-multi-output(MIMO) systems, in which the base station(BS) is equipped with digital-to-analog-converters(DACs) of mixed-level resolution. And the matched-filter(MF) precoding is used on the BS. Closedform expressions are derived by the distribution of user-interference power and other statistical properties in the signal-to-interference-plus-noise-ratio. Then, the combination of mixed-DACs resolution profile is chosen about outage probability and achievable rate with the BS energy consumption. And the resolution configurations between the outage probability and the achievable rate and the BS energy consumption are given. Meanwhile, Effects of related parameters and channel errors are analysed about outage probability and achievable rate. The numerical results show that the correctness of the formula derivations. As the number of users increases the system's achievable rate increases and the outage probability decreases. The selected resolution configuration system has better comprehensive performance.
文摘In ultra-dense networks (UDN), the local precoding scheme for time-division duplex coordinated multiple point transmission (TDD-CoMP) can have a good performance with no feedback by using reciprocity between uplink and dovallink. However, if channel is time-varying, the channel difference would cause codeword mismatch between transmitter and receiver, which leads to performance degradation. In this paper, a linear interpolation method is proposed for TDD-CoMP system to estimate the uplink channel at the receiver, which would reduce the channel difference caused by time delay and decrease the probability of codeword mismatch between both sides. Moreover, to mitigate severe inter-cell interference and increase the coverage and throughput of celledge users in UDN, a two-codebook scheme is used to strengthen cooperation between base stations (BSs), which can outperform the global precoding scheme with less overhead. Simulations show that the proposed scheme can significantly improve the link performance compared to the global precoding scheme.
基金supported by the National Natural Science Foundation of China (No.62001166)supported by the Natural Science Foundation of Hebei Province of China (E2019502186,F2019201362)supported by the Fundamental Research Funds for the Central Universities (2021MS073)。
文摘MIMO technique can provide higher information throughput and transmission reliability for the PLC system.However,the MIMO-PLC system based on three-conductor cable has a high correlation among its sub-channels.Spatial multiplexing technology will be affected by the spatial correlation between MIMO-PLC sub-channels.To reduce the system bit error rate caused by MIMO-PLC correlation among sub-channels,this paper proposed a phase rotation precoding scheme for the 2×2 closed-loop MIMO-PLC system.According to the channel transfer function of high correlation MIMO-PLC system,the phase rotation precoding matrix F is calculated,and the transmission signal matrix S is modulated with the F,the code distance at the receiving point with smallest code distance is increased by phase rotation.Simulation results show that the scheme can effectively reduce the bit error rate of the 2×2 MIMO-PLC system based on ML detection,and significantly improve the system performance.
基金Supported by the National Natural Science Foundation of China(No. 60972041,No. 60572130)Open Research Foundation of National Mobile Communications Research Laboratory,Southeast University,Natural Science Fundamental Research Program of Jiangsu Universities(No. 08KJD510001)+2 种基金Ph.D.Program Foundation of Ministry of Education(No.200802930004)National Special Project (No.2009ZX03003-006)the Science Foundation of Henan University of Technology(No.09XGG010)
文摘An optimal linear precoding scheme based on Particle Swarm Optimization(PSO),which aims to maximize the system capacity of the cooperative transmission in the downlink channel,is proposed for a multicell multiuser single input single output system.With such a scheme,the optimal precoding vector could be easily searched for each user according to a simplified objective function.Simulation results show that the proposed scheme can obtain larger average spectrum efficiency and a better Bit Error Rate(BER) performance than Zero Forcing(ZF) and Minimum Mean Square Error(MMSE) algorithm.