Qin Medicine,referring to the traditional medicinal system and geo-authentic herbs originating from Shaanxi Province and its surrounding regions,has played a pivotal role in the evolution of Chinese medicine.Rooted in...Qin Medicine,referring to the traditional medicinal system and geo-authentic herbs originating from Shaanxi Province and its surrounding regions,has played a pivotal role in the evolution of Chinese medicine.Rooted in the distinct biogeographical landscape of the“Three Qin”region-comprising northern Shaanxi’s Loess Plateau,the Guanzhong Plain,and the southern Qinling-Bashan Mountains-Qin Medicine embodies the synergistic convergence of endemic biodiversity,empirical therapeutic traditions,and regional cultural identity[1].The distinct biogeographical landscape of the“Three Qin”region profoundly shaped Qin Medicine’s development.The arid Loess Plateau of northern Shaanxi,characterized by drought-tolerant flora,yields herbs such as Huangqi(Astragalus membranaceus)and Dahuang(Rheum palmatum)in harsh environments.In contrast,the biodiverse,humid Qinling-Bashan Mountains fostered a wealth of herbs for clearing heat,resolving dampness,and calming the spirit,such as Huanglian(Coptis chinensis),Fuling(Poria cocos),and Tianma(Gastrodia elata).The fertile Guanzhong Plain supported the cultivation of herbs such as Baishao(Paeonia lactiflora)and Danggui(Angelica sinensis)[2].This article traces the historical trajectory of Qin Medicine,systematically analyzing its formation,development,and modern advancements.展开更多
The Shuangwang Au deposit in the western Qinling Orogen is hosted by a WNW-ESE-trending breccia belt that is structurally controlled by the northern limb of the Yindonggou fold.Igneous rocks area in the deposit are pa...The Shuangwang Au deposit in the western Qinling Orogen is hosted by a WNW-ESE-trending breccia belt that is structurally controlled by the northern limb of the Yindonggou fold.Igneous rocks area in the deposit are part of the Xiba pluton,which comprises granodiorite and monzogranite that contains mafic microgranular envlaves(MMEs),and later mineralized granitic porphyry dikes.The mineralized granitic porphyry dikes were controlled by the same structures that controlled the ore bodies.Zircon LA-ICP-MS U-Pb dating yields ages of 220.0±1.9 Ma for the granodiorite,and 217.9±1.9 Ma for the granitic porphyry,which is consistent with the mineralization ages reported in previous studies(220-218 Ma).Together with the similarity of alteration mineral assemblages between ore and mineralized granitic porphyry,we suggest that the mineralization was controlled by structure and Xiba pluton.The geochemical data show that the granodiorite and granitic porphyry are subalkaline and the MMEs are alkaline in composition.All samples have similar chondrite-normalized rare earth element patterns with enrichment of light rare earth elements.The granodiorite and MMEs are depleted in Nb,Ta,Sr,P,and Ti and enriched in U,K,Pb,Zr,and Hf.The granitic porphyry is enriched in large-ion lithophile elements but depleted in high-field-strength elements.The granodiorite and MMEs have low whole-rockεNd(t)values(−10.90 to−2.32)and(^(87)Sr/^(86)Sr)i ratios(0.7000-0.7285),similar to coeval Triassic granites in the western Qinling Orogen.The(^(87)Sr/^(86)Sr)i ratios of the granitic porphyry have been affected by fluid metasomatism that results in higher(^(87)Sr/^(86)Sr)i values.The geochronological,geochemical,and isotopic evidence suggest that the Xiba pluton formed by partial melting of thickened lower crust that had been intruded by alkaline mafic magma,as documented by the MMEs,which were derived from a source metasomatized by subduction-related fluids.The granodioritic and granitic porphyry magmas were relatively oxidized(fayalite-magnetite-quartz[FMQ]to magnetite-hematite(MH)buffer conditions;zircon Ce^(4+)/Ce^(3+)=72-813;log(fO_(2))=−22 to−8).We propose that magma mixing between lower crust and mantle-derived mafic magma was triggered by the tectonic transition from a collisional to post-collision setting,which provided the metals,S,fluids,and increase in magma oxygen fugacity that enabled the formation of the Shuangwang Au deposit.Since the Late Triassic,the western Qinling Orogen evolved from a syn-collisional compressional to post-collisional extensional environment.The mineralization of the Shuangwang Au deposit involved early formation of a tectonic breccia in the compressional stage.Subsequently,hydrothermal fluids derived from a magma ascended,migrated,mixed,and precipitated ores in the tectonic breccia during the later extensional stage to form the Shuangwang Au deposit.展开更多
The Qinling orogenic belt in central China underwent long-term tectonic evolution during an amalgamation between the North China and South China cratons.However,intense compressional deformation and uplift erosion res...The Qinling orogenic belt in central China underwent long-term tectonic evolution during an amalgamation between the North China and South China cratons.However,intense compressional deformation and uplift erosion resulted in the transformation and disappearance of much geological record from the Qinling orogenic belt,and the tectonic evolution of this belt remains poorly constrained during the Triassic.Located in the northernmost margin of the South China Craton,the Sichuan Basin preserves the complete Triassic sedimentary succession,and can provide significant information for understanding the Triassic tectonic evolution of the Qinling orogenic belt.We present detrital zircon U-Pb dating,trace element and in situ Lu-Hf isotope data for the Middle Triassic Leikoupo Formation and the Late Triassic Xujiahe Formation samples from the eastern Sichuan Basin,South China.The detrital zircon U-Pb ages of the Leikoupo Formation show seven age clusters of 280-242,350-300,500-400,1000-800,2000-1750,2100-2000 and 2600-2400 Ma,while those of the Xujiahe Formation show five age clusters of 300-200,500-350,1050-950,2000-1750 and 2600-2400 Ma.Combined with published paleocurrent and paleogeographic data,the sediments of the Leikoupo Formation are interpreted to be sourced from the North China Craton,Yangtze Craton and North Qinling orogenic belt,and the potential main source regions of the Xujiahe Formation included the South and North Qinling orogenic belts.Provenance analysis indicates that the North Qinling orogenic belt was in inherited uplift and coeval denudation in the Middle Triassic.The proportion of the detritus formed in the South Qinling orogenic belt increases gradually from the Leikoupo to Xujiahe formations.This significant provenance change indicates that rapid tectonic uplift and extensive denudation of the South Qinling orogenic belt occurred in the early Late Triassic,which is related to the collision between the North China and South China cratons during the Triassic.展开更多
A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and...A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and Mo2S3 nanoparticles were integrated at the edges of Co3O4 nanosheets,creating a rich,heterogeneous interface that enhances the synergistic effects of each component.In an alkaline electrolyte,the synthesized CoMoNiO-S/NF-110 exhibited superior electrocatalytic performance for oxygen evolution reaction(OER),achieving current densities of 100 and 200 mA·cm^(-2) with low overpotentials of 199.4 and 224.4 mV,respectively,outperforming RuO2 and several high-performance Mo and Ni-based catalysts.This excellent performance is attributed to the rich interface formed between the components and active sites exposed by the defect structure.展开更多
The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecul...The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecules and{[Co2(BINDI)(DMA)_(2)]·DMA}_(n)(Co-MOF,H4BINDI=N,N'-bis(5-isophthalic acid)naphthalenediimide,DMA=N,N-dimethylacetamide)was synthesized via a one-pot method,leveragingπ-πinteractions between pyrene and Co-MOF to modulate electrical conductivity.Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes,achieving an overpotential of 246 mV at a current density of 10 mA·cm^(-2) along with excellent stability.Density functional theory(DFT)calculations reveal that the formation of O*in the second step is the rate-determining step(RDS)during the OER process on Co-MOF,with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH*intermediate for Co sites.CCDC:2419276.展开更多
The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor ...The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor featuring a broad spectral absorption range,is successfully employed as the electron acceptor to combine with CdS for constructing a S-scheme heterojunction.The optimized photocatalyst(CdSCuO2∶1)delivers an exceptional hydrogen evolution rate of 18.89 mmol/(g·h),4.15-fold higher compared with bare CdS.X-ray photoelectron spectroscopy(XPS)and ultraviolet-visible diffuse reflection absorption spectroscopy(UV-vis DRS)confirmed the S-scheme band structure of the composites.Moreover,the surface photovoltage(SPV)and electron paramagnetic resonance(EPR)indicated that the photogenerated electrons and photogenerated holes of CdS-CuO2∶1 were respectively transferred to the conduction band(CB)of CdS with a higher reduction potential and the valence band(VB)of CuO with a higher oxidation potential under illumination,as expected for the S-scheme mechanism.Density-functional-theory calculations of the electron density difference(EDD)disclose an interfacial electric field oriented from CdS to CuO.This built-in field suppresses charge recombination and accelerates carrier migration,rationalizing the markedly enhanced PHE activity.This study offers a novel strategy for designing S-scheme heterojunctions with high light harvesting and charge utilization toward sustainable solar-tohydrogen conversion.展开更多
Developing efficient and durable electrocatalysts for acidic oxygen evolution reaction(OER)is pivotal for advancing proton exchange membrane water electrolysis(PEMWEs),yet balancing activity and stability remains a fo...Developing efficient and durable electrocatalysts for acidic oxygen evolution reaction(OER)is pivotal for advancing proton exchange membrane water electrolysis(PEMWEs),yet balancing activity and stability remains a formidable challenge.Herein,we propose a dual-engineering strategy to stabilize Ru-based catalysts by synergizing the oxygen vacancy site-synergized mechanism-lattice oxygen mechanism(OVSM-LOM)with Ru-N bond stabilization.The engineered RuO_(2)@NCC catalyst exhibits exceptional OER performance in 0.5 M H2SO4,achieving an ultralow overpotential of 215 mV at 10 mA cm^(-2) and prolonged stability for over 327 h.The catalyst delivers 300 h of continuous operation at 1 A cm^(-2),with a negligible degradation rate of only 0.067 mV h-1,further demonstrating its potential for practical application.Oxygen vacancies unlock the OVSM-LOM pathway,bypassing the sluggish adsorbate evolution mechanism(AEM)and accelerating reaction kinetics,while the Ru-N bonds suppress Ru dissolution by anchoring low-valent Ru centers.Quasi-in situ X-ray photoelectron spectroscopy(XPS),X-ray absorption spectroscopy(XAS),and isotopic labeling experiments confirm the lattice oxygen participation with *O formation as the rate-determining step.The Ru-N bonds reinforce the structural integrity by stabilizing low-valent Ru centers and inhibiting overoxidation.Theoretical calculations further verify that the synergistic interaction between OVs and Ru-O(N)active sites optimizes the Ru d-band center and stabilizes intermediates,while Ru-N coordination enhances structural integrity.This study establishes a novel paradigm for designing robust acidic OER catalysts through defect and coordination engineering,bridging the gap between activity and stability for sustainable energy technologies.展开更多
Serbisütherapy(ST)is a distinctive external treatment modality within traditional Mongolian medicine(TMM),historically developed within a nomadic cultural framework.This study presents a comprehensive philologica...Serbisütherapy(ST)is a distinctive external treatment modality within traditional Mongolian medicine(TMM),historically developed within a nomadic cultural framework.This study presents a comprehensive philological and historical analysis of ST,tracing its evolution from early battlefield applications to contemporary clinical use.By critically examining classical Mongolian medical texts alongside modern case studies,we aim to systematize ST’s therapeutic methods,indications,and limitations,while exploring its mechanisms of action through both traditional theory and modern biomedical perspectives.ST has undergone significant transformation,shifting from whole-body cavity immersion in the 13th century to targeted,organ-specific applications in modern practice.Its four primary methods–Covering,Mounted,Organ Placement,and Suction–demonstrate efficacy in treating cold-natured diseases,musculoskeletal disorders,gynecological conditions,and certain emergencies.ST embodies the core principles of TMM,particularly the balance of the“Three Roots”and the correction of cold-induced pathologies through heat.Despite challenges related to standardization,cultural translation,and regulatory acceptance,ST holds translational potential for integrative medicine.Future research should prioritize mechanistic validation,clinical standardization,and the development of biocompatible thermal technologies to bridge traditional practice with modern healthcare systems.展开更多
Oxygen evolution reaction(OER)is a key step in hydrogen production by water electrolysis technology.How-ever,developing efficient,stable,and low-cost OER electrocatalysts is still challenging.This article presents the...Oxygen evolution reaction(OER)is a key step in hydrogen production by water electrolysis technology.How-ever,developing efficient,stable,and low-cost OER electrocatalysts is still challenging.This article presents the preparation of a series of novel copper iridium nanocatalysts with heterostructures and low iridium content for OER.The electrochemical tests revealed higher OER of Cu@Ir_(0.3) catalyst under acidic conditions with a generated current density of 10 mA/cm^(2) at only 284 mV overpotential.The corresponding OER mass activity was estimated to be 1.057 A/mgIr,a value 8.39-fold higher than that of the commercial IrO_(2).After 50 h of endurance testing,the Cu@Ir_(0.3) catalyst preserved excellent catalytic activity with a negligible rise in overpotential and maintained a good heterostructures.Cu@Ir_(0.3) The excellent OER activity can be attributed to its heterostructure,as con-firmed by density functional theory(DFT)calculations,indicating that Cu@Ir The coupling between isoquanta causes charge redistribution,optimizing the adsorption energy of unsaturated Ir sites for oxygen intermediates and reducing the energy barrier of OER free energy determining the rate step.In summary,this method provides a new approach for designing efficient,stable,and low iridium content OER catalysts.展开更多
The dissimilar 2B06 and 7B04 Al alloy joints were prepared by refill friction stir spot welding(RFSSW),and the microstructural evolution and corrosion behavior of the joints were investigated.Based on microstructural ...The dissimilar 2B06 and 7B04 Al alloy joints were prepared by refill friction stir spot welding(RFSSW),and the microstructural evolution and corrosion behavior of the joints were investigated.Based on microstructural analysis,the welded joints exhibit distinct microstructural zones,including the stir zone(SZ),thermomechanically affected zone(TMAZ),and heat-affected zone(HAZ).The grain size of each zone is in the order of HAZ>TMAZ>SZ.Notably,the TMAZ and HAZ contain significantly larger secondary-phase particles compared to the SZ,with particle size in the HAZ increasing at higher rotational speeds.Electrochemical tests indicate that corrosion susceptibility follows the sequence of HAZ>TMAZ>SZ>BM,with greater sensitivity observed at increased rotational speeds.Post-corrosion mechanical performance degradation primarily arises from crevice corrosion at joint overlaps,but not from the changes in the microstructure.展开更多
We have studied the evolution of the tectonic lithofacies paleogeography of Paleocene- Eocene, Oligocene, Miocene, and Pliocene of the Qinghai-Tibet Plateau by compiling data regarding the type, tectonic setting, and ...We have studied the evolution of the tectonic lithofacies paleogeography of Paleocene- Eocene, Oligocene, Miocene, and Pliocene of the Qinghai-Tibet Plateau by compiling data regarding the type, tectonic setting, and iithostratigraphic sequence of 98 remnant basins in the plateau area. Our results can be summarized as follows. (1) The Paleocene to Eocene is characterized by uplift and erosion in the Songpan-Garze and Gangdise belts, depression (lakes and pluvial plains) in eastern Tarim, Qaidam, Qiangtang, and Hoh Xil, and the Neo-Tethys Sea in the western and southern Qinghai-Tibet Plateau. (2) The Oligocene is characterized by uplift in the Gangdise--Himalaya and Karakorum regions (marked by the absence of sedimentation), fluvial transport (originating eastward and flowing westward) in the Brahmaputra region (marked by the deposition of Dazhuka conglomerate), uplift and erosion in western Kunlun and Songpan-Garze, and depression (lakes) in the Tarim, Qaidam, Qiangtang, and Hoh Xil. The Oligocene is further characterized by depressional littoral and neritic basins in southwestern Tarim, with marine facies deposition ceasing at the end of the Oligocene. (3) For the Miocene, a widespread regional unconformity (ca. 23 Ma) in and adjacent to the plateau indicates comprehensive uplift of the plateau. This period is characterized by depressions (lakes) in the Tarim, Qaidam, Xining-Nanzhou, Qiangtang, and Hoh Xil. Lacustrine facies deposition expanded to peak in and adjacent to the plateau ca. 18-13 Ma, and north-south fault basins formed in southern Tibet ca. 13-10 Ma. All of these features indicate that the plateau uplifted to its peak and began to collapse. (4) Uplift and erosion occurred during the Pliocene in most parts of the plateau, except in the Hoh Xil-Qiangtang, Tarim, and Qaidam. The continuous uplift and intensive taphrogeny in the plateau divided the original large basin into small basins, deposition of lacustrine facies decreased considerably, and boulderstone accumulated, indicating a response to the overall uplift of the plateau. Here, we discuss the evolution of tectonic lithofacies paleogeography in Cenozoic and its response to the tectonic uplift of the Qinghai-Tibet Plateau in relation to the above characteristics. We have recognized five major uplift events, which occurred during 58-53 Ma, 45-30 Ma, 25-20 Ma, 13-7 Ma, and since 5 Ma. The results presented here indicate that the paleogeomorphic configurations of the Qinghai-Tibet Plateau turned over during the late Miocene, with high elevations in the east during the pre-Miocene switching to high contours in the west at the end of Miocene.展开更多
The mineral rock salts present in the Mahai Salt Lake of the Qaidam basin exhibit high solubilities in water. In addition, the multicomponent underground brine exhibits a high salinity and is easily precipitated. In t...The mineral rock salts present in the Mahai Salt Lake of the Qaidam basin exhibit high solubilities in water. In addition, the multicomponent underground brine exhibits a high salinity and is easily precipitated. In the natural state, brine transport in the brine layer is extremely slow, and the brine is in a relatively stable chemical equilibrium state with the rock salt media. However, during mining, both the seepage and the chemical fields fluctuate significantly, thereby disrupting the equilibrium and leading to variations in the chemical composition and dynamic characteristics of the brine. Therefore, we selected underground brine from the Mahai Salt Lake, collecting a total of 183 brine samples over three stages of mining(i.e., the early stage of underground brine extraction, the initial stage of mining, and the later stage of mining). Using a range of analytical techniques, the chemical dynamics of the underground brine water and its evolution were systematically studied. We found that evaporation and enrichment were the main mechanisms of underground brine evolution in the Mahai Salt Lake, with cation exchange and mineral dissolution/precipitation being key factors in determining the dynamic characteristics and evolution of the brine.展开更多
The determination of channel evolutions and the causes is important for reconstructing the evolutionary history of river landforms.This study aimed to elucidate the downstream channel evolution of the Yuan River in Hu...The determination of channel evolutions and the causes is important for reconstructing the evolutionary history of river landforms.This study aimed to elucidate the downstream channel evolution of the Yuan River in Hunan Province,China,during the Qing Dynasty via Landsat 8 satellite image data and relevant literature.The objective was to establish the modes of channel evolution and discuss the significance of historical climate change.The downstream paleochannel of the Yuan River was identified in the Late Ming Dynasty and Early Qing Dynasty(1600–1644 AD),the Kangxi-Qianlong periods of the Qing Dynasty(1661–1796 AD),the Late Qing Dynasty(1840–1912 AD),and the World War II(1939–1945 AD),and three main modes of river evolution were determined.Using remote sensing data and the ancient literature,the evolution characteristics of the paleochannel in the Lower Yuan River were analyzed and its distribution across historical periods was comprehensively revealed.The findings reveal a strong correlation between channel evolution,flood events,and climate change.Numerous flood events that occurred from the Late Qing Dynasty to the World War II caused a high rate of channel evolution,demonstrating the combined effects of climate change and human activities.These findings will help adopt robust and resilient hydrological management methods in the future of a changing climate.展开更多
Qaidam basin is located at northeast Qinghai—Xizang (Tibet) plateau, and surrounded by east Kunlun, south Qilian and Altun mountain systems. The purpose of this paper is to study the Cenozoic basin evolutionary stage...Qaidam basin is located at northeast Qinghai—Xizang (Tibet) plateau, and surrounded by east Kunlun, south Qilian and Altun mountain systems. The purpose of this paper is to study the Cenozoic basin evolutionary stages, structural styles of the Qaidam, and the denudation in adjacent mountain systems through seismic profile interpretation and complemented by field observation. The Qaidam basin has experienced two tectonic stages of Paleogene—early Miocene (65~12Ma) and late Miocene—present (12~0Ma). The former is characterized by differential uplift of the mountains and subsidence of the basin, and the latter by intense compression, wrench, thrusting and folding. The compressional structural styles are mainly distributed in the Circle Hero—Range Depression of southwest Qaidam, such as Nanyishan, Youquanzi, Younan, Youshashan anticline belts and thrust faults. The wrench structural styles of the northern Qaidam include en echelon uplifts (fault—block outcrops) such as Seshitengshan, Luliangshan, Xitieshan and Eimnikshan, which are mainly composed of pre\|Sinian and Paleozoic rocks; en echelon anticlines such as Lenghu—Nanbaxian belts; and en echelon depressions such as Kunteyi, Senan and Yibei depressions, which are mainly composed of Mesozoic and Cenozoic rocks.展开更多
The Yitong(伊通) basin is a Late Mesozoic and Cenozoic continental sedimentary basin in Northeast China.On the basis of well tests and seismic data,we use the 2D modeling technique to rebuild the pressure evolution ...The Yitong(伊通) basin is a Late Mesozoic and Cenozoic continental sedimentary basin in Northeast China.On the basis of well tests and seismic data,we use the 2D modeling technique to rebuild the pressure evolution and hydrocarbon migration in the Moliqing(莫里青) fault depression of the Yitong basin.Based on the modeling results,four conclusions are drawn as follows.(1) The Eocene Shuangyang(双阳) Formation within the Moliqing fault depression had entirely undergone three epi-sodic cycles of pressure accumulation and release in geological history,and the three tectonic move-ments since the Middle Eocene played important roles in the episodic changes of excess pressure.(2) The present formation pressure distribution is characterized by normal pressure in almost the entire fault depression with some residual overpressure.The differential distribution of pressure results mainly from the difference in rock facies,sedimentation rate,hydrocarbon generation,and fault activi-ties.(3) The hydrocarbon migration is more active during the release of pressure in the Moliqing fault depression,which happened mainly in the Middle-Late Oligocene and provided the driving force for hydrocarbon migration.(4) The hydrocarbon migration was mostly directed to the Shuangyang For-mation within the Jianshan(尖山) uplift and the Kaoshan(靠山) sag.With the superior condition ofhydrocarbon accumulation and the higher de-gree of hydrocarbon concentration,the north-west part of Kaoshan sag is considered a favor-able area for oil and gas exploration in the Moliqing fault depression.展开更多
The Songliao Basin is one of the most important petroliferous basins in northern China. With a recent gradual decline in conventional oil production in the basin, the exploration and development of unconventional reso...The Songliao Basin is one of the most important petroliferous basins in northern China. With a recent gradual decline in conventional oil production in the basin, the exploration and development of unconventional resources are becoming increasingly urgent. The Qingshankou Formation consists of typical Upper Cretaceous continental strata, and represents a promising and practical replacement resource for shale oil in the Songliao Basin. Previous studies have shown that low-mature to mature Qingshankou shale mainly preserves type Ⅰ and type Ⅱ1 organic matter, with relatively high total organic carbon(TOC) content. It is estimated that there is a great potential to explore for shale oil resources in the Qingshankou Formation in this basin. However, not enough systematic research has been conducted on pore characteristics and their main controlling factors in this lacustrine shale reservoir. In this study, 19 Qingshankou shales from two wells drilled in the study area were tested and analyzed for mineral composition, pore distribution and feature evolution using Xray diffraction(XRD), scanning electron microscopy(SEM), low-pressure nitrogen gas adsorption(N2-GA), and thermal simulation experiments. The XRD results show that clay, quartz, and feldspar are the dominant mineral constituents of Qingshankou shale. The clay minerals are mostly illite/smectite mixed layers with a mean content of 83.5%, followed by illite, chlorite, and kaolinite. There are abundant deposits of clay-rich shale in the Qingshankou Formation in the study area, within which many mineral and organic matter pores were observed using SEM. Mineral pores contribute the most to shale porosity;specifically, clay mineral pores and carbonate pores comprise most of the mineral pores in the shale. Among the three types of organic matter pores, type B is more dominant the other two. Pores with diameters greater than 10 nm supply the main pore volume;most are half-open slits and wedge-shaped pores. The total pore volume had no obvious linear relationship with TOC content, but had some degree of positive correlation with the content of quartz + feldspar and clay minerals respectively. However, it was negatively correlated with carbonate mineral content. The specific surface area of the pores is negatively related to TOC content, average pore diameter, and carbonate mineral content. Moreover, it had a somewhat positive correlation with clay mineral content and no clear linear relationship with the content of quartz + feldspar. With increases in maturity, there was also an increase in the number of carbonate mineral dissolution pores and organic matter pores, average pore diameter, and pore volume, whereas there was a decrease in specific surface area of the pores. Generally, the Qingshankou shale is at a low-mature to mature stage with a TOC content of more than 1.0%, and could be as thick as 250 m in the study area. Pores with diameters of more than 10 nm are well-developed in the shale. This research illustrates that there are favorable conditions for shale oil occurrence and enrichment in the Qingshankou shale in the study area.展开更多
The relation between the dynamic evolution feature of gravity field and strong seismicity is studied. The result shows that the regional gravity field variation enjoys inhomogeneity of spatial and temporal distributio...The relation between the dynamic evolution feature of gravity field and strong seismicity is studied. The result shows that the regional gravity field variation enjoys inhomogeneity of spatial and temporal distribution and gravity change in different regions. It may be resulted from active faults and seismogenic process, and may be due to microdynamic activity of regional strain energy, which might be accumulated or released in different stages, and there exists transformation process of stress.展开更多
The intense uplift of the Qinghai-Xizang Plateau givesrise to drastic changes of natural environment and distinctdifferentiation of the Plateau proper. This paper focuses on theevolution of subtropical environment at ...The intense uplift of the Qinghai-Xizang Plateau givesrise to drastic changes of natural environment and distinctdifferentiation of the Plateau proper. This paper focuses on theevolution of subtropical environment at low altitude to frigidenvironment at high altitude of the region since Pliocene and thechanges effected by cold-warm amplitude bf global change. Bycomparative study on the structure-type of the altitudinal belt, adistributional model diagram with close relevance to highlanduplift effect has been generalized. Based on regjonaldifferentiation of the Qinghai-Xizang Plateau, a number ofstriking geo-ecological phenomena such as moisture corridor, dryvalleys and high cold-arid core area are investigated anddiscussed.展开更多
Based on the remote sensing survey and monitoring results of snow lines on the Qinghai-Tibet Plateau, the authors analyzed the following eco-geological factors such as water resources, permafrost, desertification, wet...Based on the remote sensing survey and monitoring results of snow lines on the Qinghai-Tibet Plateau, the authors analyzed the following eco-geological factors such as water resources, permafrost, desertification, wetlands, lake, geological disasters, sea-level rising, earthquake, etc., affected by the change of snow lines over the past 40 years, and discuss the response between glacier evolution and the eco-geological environment preliminarily.展开更多
The formation, development and evolution of the Qinling orogenic belt can be divided into three stages: (1) formation and development of Precambrian basement in the Late Archaean-Palaeoproterozoic (3.0–1.6 Ga), (2) p...The formation, development and evolution of the Qinling orogenic belt can be divided into three stages: (1) formation and development of Precambrian basement in the Late Archaean-Palaeoproterozoic (3.0–1.6 Ga), (2) plate evolution (0.8–0.2 Ga), and (3) intracontinental orogeny and tectonic evolution in the Mesozoic.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.82274313)Project of Shaanxi Administration of Traditional Chinese Medicine(Grant No.2022-SLRH-YQ-010).
文摘Qin Medicine,referring to the traditional medicinal system and geo-authentic herbs originating from Shaanxi Province and its surrounding regions,has played a pivotal role in the evolution of Chinese medicine.Rooted in the distinct biogeographical landscape of the“Three Qin”region-comprising northern Shaanxi’s Loess Plateau,the Guanzhong Plain,and the southern Qinling-Bashan Mountains-Qin Medicine embodies the synergistic convergence of endemic biodiversity,empirical therapeutic traditions,and regional cultural identity[1].The distinct biogeographical landscape of the“Three Qin”region profoundly shaped Qin Medicine’s development.The arid Loess Plateau of northern Shaanxi,characterized by drought-tolerant flora,yields herbs such as Huangqi(Astragalus membranaceus)and Dahuang(Rheum palmatum)in harsh environments.In contrast,the biodiverse,humid Qinling-Bashan Mountains fostered a wealth of herbs for clearing heat,resolving dampness,and calming the spirit,such as Huanglian(Coptis chinensis),Fuling(Poria cocos),and Tianma(Gastrodia elata).The fertile Guanzhong Plain supported the cultivation of herbs such as Baishao(Paeonia lactiflora)and Danggui(Angelica sinensis)[2].This article traces the historical trajectory of Qin Medicine,systematically analyzing its formation,development,and modern advancements.
基金supported by the Natural Science Foundation of Shaanxi Province(2023-JC-YB-222)National Natural Science Foundation of China(41872219)+1 种基金Opening Foundation of Key Laboratory of Mineral Resources Evaluation in Northeast Asia,Ministry of Natural Resources(DBY-KF-19-12)Research on metallogenic structure and metallogenic structural plane of Shuangwang gold deposit(220227220347,220227230756).
文摘The Shuangwang Au deposit in the western Qinling Orogen is hosted by a WNW-ESE-trending breccia belt that is structurally controlled by the northern limb of the Yindonggou fold.Igneous rocks area in the deposit are part of the Xiba pluton,which comprises granodiorite and monzogranite that contains mafic microgranular envlaves(MMEs),and later mineralized granitic porphyry dikes.The mineralized granitic porphyry dikes were controlled by the same structures that controlled the ore bodies.Zircon LA-ICP-MS U-Pb dating yields ages of 220.0±1.9 Ma for the granodiorite,and 217.9±1.9 Ma for the granitic porphyry,which is consistent with the mineralization ages reported in previous studies(220-218 Ma).Together with the similarity of alteration mineral assemblages between ore and mineralized granitic porphyry,we suggest that the mineralization was controlled by structure and Xiba pluton.The geochemical data show that the granodiorite and granitic porphyry are subalkaline and the MMEs are alkaline in composition.All samples have similar chondrite-normalized rare earth element patterns with enrichment of light rare earth elements.The granodiorite and MMEs are depleted in Nb,Ta,Sr,P,and Ti and enriched in U,K,Pb,Zr,and Hf.The granitic porphyry is enriched in large-ion lithophile elements but depleted in high-field-strength elements.The granodiorite and MMEs have low whole-rockεNd(t)values(−10.90 to−2.32)and(^(87)Sr/^(86)Sr)i ratios(0.7000-0.7285),similar to coeval Triassic granites in the western Qinling Orogen.The(^(87)Sr/^(86)Sr)i ratios of the granitic porphyry have been affected by fluid metasomatism that results in higher(^(87)Sr/^(86)Sr)i values.The geochronological,geochemical,and isotopic evidence suggest that the Xiba pluton formed by partial melting of thickened lower crust that had been intruded by alkaline mafic magma,as documented by the MMEs,which were derived from a source metasomatized by subduction-related fluids.The granodioritic and granitic porphyry magmas were relatively oxidized(fayalite-magnetite-quartz[FMQ]to magnetite-hematite(MH)buffer conditions;zircon Ce^(4+)/Ce^(3+)=72-813;log(fO_(2))=−22 to−8).We propose that magma mixing between lower crust and mantle-derived mafic magma was triggered by the tectonic transition from a collisional to post-collision setting,which provided the metals,S,fluids,and increase in magma oxygen fugacity that enabled the formation of the Shuangwang Au deposit.Since the Late Triassic,the western Qinling Orogen evolved from a syn-collisional compressional to post-collisional extensional environment.The mineralization of the Shuangwang Au deposit involved early formation of a tectonic breccia in the compressional stage.Subsequently,hydrothermal fluids derived from a magma ascended,migrated,mixed,and precipitated ores in the tectonic breccia during the later extensional stage to form the Shuangwang Au deposit.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC0602704)the National Natural Science Foundation of China(Grant No.U20B6001 and 91755211).
文摘The Qinling orogenic belt in central China underwent long-term tectonic evolution during an amalgamation between the North China and South China cratons.However,intense compressional deformation and uplift erosion resulted in the transformation and disappearance of much geological record from the Qinling orogenic belt,and the tectonic evolution of this belt remains poorly constrained during the Triassic.Located in the northernmost margin of the South China Craton,the Sichuan Basin preserves the complete Triassic sedimentary succession,and can provide significant information for understanding the Triassic tectonic evolution of the Qinling orogenic belt.We present detrital zircon U-Pb dating,trace element and in situ Lu-Hf isotope data for the Middle Triassic Leikoupo Formation and the Late Triassic Xujiahe Formation samples from the eastern Sichuan Basin,South China.The detrital zircon U-Pb ages of the Leikoupo Formation show seven age clusters of 280-242,350-300,500-400,1000-800,2000-1750,2100-2000 and 2600-2400 Ma,while those of the Xujiahe Formation show five age clusters of 300-200,500-350,1050-950,2000-1750 and 2600-2400 Ma.Combined with published paleocurrent and paleogeographic data,the sediments of the Leikoupo Formation are interpreted to be sourced from the North China Craton,Yangtze Craton and North Qinling orogenic belt,and the potential main source regions of the Xujiahe Formation included the South and North Qinling orogenic belts.Provenance analysis indicates that the North Qinling orogenic belt was in inherited uplift and coeval denudation in the Middle Triassic.The proportion of the detritus formed in the South Qinling orogenic belt increases gradually from the Leikoupo to Xujiahe formations.This significant provenance change indicates that rapid tectonic uplift and extensive denudation of the South Qinling orogenic belt occurred in the early Late Triassic,which is related to the collision between the North China and South China cratons during the Triassic.
文摘A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and Mo2S3 nanoparticles were integrated at the edges of Co3O4 nanosheets,creating a rich,heterogeneous interface that enhances the synergistic effects of each component.In an alkaline electrolyte,the synthesized CoMoNiO-S/NF-110 exhibited superior electrocatalytic performance for oxygen evolution reaction(OER),achieving current densities of 100 and 200 mA·cm^(-2) with low overpotentials of 199.4 and 224.4 mV,respectively,outperforming RuO2 and several high-performance Mo and Ni-based catalysts.This excellent performance is attributed to the rich interface formed between the components and active sites exposed by the defect structure.
文摘The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecules and{[Co2(BINDI)(DMA)_(2)]·DMA}_(n)(Co-MOF,H4BINDI=N,N'-bis(5-isophthalic acid)naphthalenediimide,DMA=N,N-dimethylacetamide)was synthesized via a one-pot method,leveragingπ-πinteractions between pyrene and Co-MOF to modulate electrical conductivity.Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes,achieving an overpotential of 246 mV at a current density of 10 mA·cm^(-2) along with excellent stability.Density functional theory(DFT)calculations reveal that the formation of O*in the second step is the rate-determining step(RDS)during the OER process on Co-MOF,with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH*intermediate for Co sites.CCDC:2419276.
文摘The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor featuring a broad spectral absorption range,is successfully employed as the electron acceptor to combine with CdS for constructing a S-scheme heterojunction.The optimized photocatalyst(CdSCuO2∶1)delivers an exceptional hydrogen evolution rate of 18.89 mmol/(g·h),4.15-fold higher compared with bare CdS.X-ray photoelectron spectroscopy(XPS)and ultraviolet-visible diffuse reflection absorption spectroscopy(UV-vis DRS)confirmed the S-scheme band structure of the composites.Moreover,the surface photovoltage(SPV)and electron paramagnetic resonance(EPR)indicated that the photogenerated electrons and photogenerated holes of CdS-CuO2∶1 were respectively transferred to the conduction band(CB)of CdS with a higher reduction potential and the valence band(VB)of CuO with a higher oxidation potential under illumination,as expected for the S-scheme mechanism.Density-functional-theory calculations of the electron density difference(EDD)disclose an interfacial electric field oriented from CdS to CuO.This built-in field suppresses charge recombination and accelerates carrier migration,rationalizing the markedly enhanced PHE activity.This study offers a novel strategy for designing S-scheme heterojunctions with high light harvesting and charge utilization toward sustainable solar-tohydrogen conversion.
基金support from the National Natural Science Foundation of China(Nos.12305373 and 52276220)the Guangzhou Basic Research Program(No.SL2024A04J00234).
文摘Developing efficient and durable electrocatalysts for acidic oxygen evolution reaction(OER)is pivotal for advancing proton exchange membrane water electrolysis(PEMWEs),yet balancing activity and stability remains a formidable challenge.Herein,we propose a dual-engineering strategy to stabilize Ru-based catalysts by synergizing the oxygen vacancy site-synergized mechanism-lattice oxygen mechanism(OVSM-LOM)with Ru-N bond stabilization.The engineered RuO_(2)@NCC catalyst exhibits exceptional OER performance in 0.5 M H2SO4,achieving an ultralow overpotential of 215 mV at 10 mA cm^(-2) and prolonged stability for over 327 h.The catalyst delivers 300 h of continuous operation at 1 A cm^(-2),with a negligible degradation rate of only 0.067 mV h-1,further demonstrating its potential for practical application.Oxygen vacancies unlock the OVSM-LOM pathway,bypassing the sluggish adsorbate evolution mechanism(AEM)and accelerating reaction kinetics,while the Ru-N bonds suppress Ru dissolution by anchoring low-valent Ru centers.Quasi-in situ X-ray photoelectron spectroscopy(XPS),X-ray absorption spectroscopy(XAS),and isotopic labeling experiments confirm the lattice oxygen participation with *O formation as the rate-determining step.The Ru-N bonds reinforce the structural integrity by stabilizing low-valent Ru centers and inhibiting overoxidation.Theoretical calculations further verify that the synergistic interaction between OVs and Ru-O(N)active sites optimizes the Ru d-band center and stabilizes intermediates,while Ru-N coordination enhances structural integrity.This study establishes a novel paradigm for designing robust acidic OER catalysts through defect and coordination engineering,bridging the gap between activity and stability for sustainable energy technologies.
基金supported by The China Ethnic Medicine Association Research Grant(No.2023MY055-81)Science and Technology Program of the Joint Fund of Scientific Research for the Public Hospitals of Inner Mongolia Academy of Medical Sciences(2023GLLHD177,2023GLLH0174)Inner Mongolia Autonomous Region Regional Medical Center for Specialized Care(2025).
文摘Serbisütherapy(ST)is a distinctive external treatment modality within traditional Mongolian medicine(TMM),historically developed within a nomadic cultural framework.This study presents a comprehensive philological and historical analysis of ST,tracing its evolution from early battlefield applications to contemporary clinical use.By critically examining classical Mongolian medical texts alongside modern case studies,we aim to systematize ST’s therapeutic methods,indications,and limitations,while exploring its mechanisms of action through both traditional theory and modern biomedical perspectives.ST has undergone significant transformation,shifting from whole-body cavity immersion in the 13th century to targeted,organ-specific applications in modern practice.Its four primary methods–Covering,Mounted,Organ Placement,and Suction–demonstrate efficacy in treating cold-natured diseases,musculoskeletal disorders,gynecological conditions,and certain emergencies.ST embodies the core principles of TMM,particularly the balance of the“Three Roots”and the correction of cold-induced pathologies through heat.Despite challenges related to standardization,cultural translation,and regulatory acceptance,ST holds translational potential for integrative medicine.Future research should prioritize mechanistic validation,clinical standardization,and the development of biocompatible thermal technologies to bridge traditional practice with modern healthcare systems.
基金supported by the Major Science and Technology Special Plan of Yunnan Province(Nos.202302AB080012 and 202402AB080004)the National Natural Science Foundation of China(No.22264025)+1 种基金the Basic Research Foundation of Yunnan Province(Nos.202401AS070033 and 202501AT070055)the Reserve talents for young and middleaged academic and technical leaders project of Yunnan Province(No.202405AC350071).
文摘Oxygen evolution reaction(OER)is a key step in hydrogen production by water electrolysis technology.How-ever,developing efficient,stable,and low-cost OER electrocatalysts is still challenging.This article presents the preparation of a series of novel copper iridium nanocatalysts with heterostructures and low iridium content for OER.The electrochemical tests revealed higher OER of Cu@Ir_(0.3) catalyst under acidic conditions with a generated current density of 10 mA/cm^(2) at only 284 mV overpotential.The corresponding OER mass activity was estimated to be 1.057 A/mgIr,a value 8.39-fold higher than that of the commercial IrO_(2).After 50 h of endurance testing,the Cu@Ir_(0.3) catalyst preserved excellent catalytic activity with a negligible rise in overpotential and maintained a good heterostructures.Cu@Ir_(0.3) The excellent OER activity can be attributed to its heterostructure,as con-firmed by density functional theory(DFT)calculations,indicating that Cu@Ir The coupling between isoquanta causes charge redistribution,optimizing the adsorption energy of unsaturated Ir sites for oxygen intermediates and reducing the energy barrier of OER free energy determining the rate step.In summary,this method provides a new approach for designing efficient,stable,and low iridium content OER catalysts.
基金supported by the National Natural Science Foundation of China (Nos. 52075449, 51975480)。
文摘The dissimilar 2B06 and 7B04 Al alloy joints were prepared by refill friction stir spot welding(RFSSW),and the microstructural evolution and corrosion behavior of the joints were investigated.Based on microstructural analysis,the welded joints exhibit distinct microstructural zones,including the stir zone(SZ),thermomechanically affected zone(TMAZ),and heat-affected zone(HAZ).The grain size of each zone is in the order of HAZ>TMAZ>SZ.Notably,the TMAZ and HAZ contain significantly larger secondary-phase particles compared to the SZ,with particle size in the HAZ increasing at higher rotational speeds.Electrochemical tests indicate that corrosion susceptibility follows the sequence of HAZ>TMAZ>SZ>BM,with greater sensitivity observed at increased rotational speeds.Post-corrosion mechanical performance degradation primarily arises from crevice corrosion at joint overlaps,but not from the changes in the microstructure.
基金supported by the Foundation of Geological Survey of China (Nos.1212011121261,1212010733802)the National Natural Science Foundation (No.40921062)
文摘We have studied the evolution of the tectonic lithofacies paleogeography of Paleocene- Eocene, Oligocene, Miocene, and Pliocene of the Qinghai-Tibet Plateau by compiling data regarding the type, tectonic setting, and iithostratigraphic sequence of 98 remnant basins in the plateau area. Our results can be summarized as follows. (1) The Paleocene to Eocene is characterized by uplift and erosion in the Songpan-Garze and Gangdise belts, depression (lakes and pluvial plains) in eastern Tarim, Qaidam, Qiangtang, and Hoh Xil, and the Neo-Tethys Sea in the western and southern Qinghai-Tibet Plateau. (2) The Oligocene is characterized by uplift in the Gangdise--Himalaya and Karakorum regions (marked by the absence of sedimentation), fluvial transport (originating eastward and flowing westward) in the Brahmaputra region (marked by the deposition of Dazhuka conglomerate), uplift and erosion in western Kunlun and Songpan-Garze, and depression (lakes) in the Tarim, Qaidam, Qiangtang, and Hoh Xil. The Oligocene is further characterized by depressional littoral and neritic basins in southwestern Tarim, with marine facies deposition ceasing at the end of the Oligocene. (3) For the Miocene, a widespread regional unconformity (ca. 23 Ma) in and adjacent to the plateau indicates comprehensive uplift of the plateau. This period is characterized by depressions (lakes) in the Tarim, Qaidam, Xining-Nanzhou, Qiangtang, and Hoh Xil. Lacustrine facies deposition expanded to peak in and adjacent to the plateau ca. 18-13 Ma, and north-south fault basins formed in southern Tibet ca. 13-10 Ma. All of these features indicate that the plateau uplifted to its peak and began to collapse. (4) Uplift and erosion occurred during the Pliocene in most parts of the plateau, except in the Hoh Xil-Qiangtang, Tarim, and Qaidam. The continuous uplift and intensive taphrogeny in the plateau divided the original large basin into small basins, deposition of lacustrine facies decreased considerably, and boulderstone accumulated, indicating a response to the overall uplift of the plateau. Here, we discuss the evolution of tectonic lithofacies paleogeography in Cenozoic and its response to the tectonic uplift of the Qinghai-Tibet Plateau in relation to the above characteristics. We have recognized five major uplift events, which occurred during 58-53 Ma, 45-30 Ma, 25-20 Ma, 13-7 Ma, and since 5 Ma. The results presented here indicate that the paleogeomorphic configurations of the Qinghai-Tibet Plateau turned over during the late Miocene, with high elevations in the east during the pre-Miocene switching to high contours in the west at the end of Miocene.
基金the support of the National Natural Science Foundation of China(41672243,41877198)
文摘The mineral rock salts present in the Mahai Salt Lake of the Qaidam basin exhibit high solubilities in water. In addition, the multicomponent underground brine exhibits a high salinity and is easily precipitated. In the natural state, brine transport in the brine layer is extremely slow, and the brine is in a relatively stable chemical equilibrium state with the rock salt media. However, during mining, both the seepage and the chemical fields fluctuate significantly, thereby disrupting the equilibrium and leading to variations in the chemical composition and dynamic characteristics of the brine. Therefore, we selected underground brine from the Mahai Salt Lake, collecting a total of 183 brine samples over three stages of mining(i.e., the early stage of underground brine extraction, the initial stage of mining, and the later stage of mining). Using a range of analytical techniques, the chemical dynamics of the underground brine water and its evolution were systematically studied. We found that evaporation and enrichment were the main mechanisms of underground brine evolution in the Mahai Salt Lake, with cation exchange and mineral dissolution/precipitation being key factors in determining the dynamic characteristics and evolution of the brine.
文摘The determination of channel evolutions and the causes is important for reconstructing the evolutionary history of river landforms.This study aimed to elucidate the downstream channel evolution of the Yuan River in Hunan Province,China,during the Qing Dynasty via Landsat 8 satellite image data and relevant literature.The objective was to establish the modes of channel evolution and discuss the significance of historical climate change.The downstream paleochannel of the Yuan River was identified in the Late Ming Dynasty and Early Qing Dynasty(1600–1644 AD),the Kangxi-Qianlong periods of the Qing Dynasty(1661–1796 AD),the Late Qing Dynasty(1840–1912 AD),and the World War II(1939–1945 AD),and three main modes of river evolution were determined.Using remote sensing data and the ancient literature,the evolution characteristics of the paleochannel in the Lower Yuan River were analyzed and its distribution across historical periods was comprehensively revealed.The findings reveal a strong correlation between channel evolution,flood events,and climate change.Numerous flood events that occurred from the Late Qing Dynasty to the World War II caused a high rate of channel evolution,demonstrating the combined effects of climate change and human activities.These findings will help adopt robust and resilient hydrological management methods in the future of a changing climate.
文摘Qaidam basin is located at northeast Qinghai—Xizang (Tibet) plateau, and surrounded by east Kunlun, south Qilian and Altun mountain systems. The purpose of this paper is to study the Cenozoic basin evolutionary stages, structural styles of the Qaidam, and the denudation in adjacent mountain systems through seismic profile interpretation and complemented by field observation. The Qaidam basin has experienced two tectonic stages of Paleogene—early Miocene (65~12Ma) and late Miocene—present (12~0Ma). The former is characterized by differential uplift of the mountains and subsidence of the basin, and the latter by intense compression, wrench, thrusting and folding. The compressional structural styles are mainly distributed in the Circle Hero—Range Depression of southwest Qaidam, such as Nanyishan, Youquanzi, Younan, Youshashan anticline belts and thrust faults. The wrench structural styles of the northern Qaidam include en echelon uplifts (fault—block outcrops) such as Seshitengshan, Luliangshan, Xitieshan and Eimnikshan, which are mainly composed of pre\|Sinian and Paleozoic rocks; en echelon anticlines such as Lenghu—Nanbaxian belts; and en echelon depressions such as Kunteyi, Senan and Yibei depressions, which are mainly composed of Mesozoic and Cenozoic rocks.
基金supported by the National Natural Science Foundation of China (No. 40172051)the Jilin Oil Field Scientific Project of China National Petroleum Corporation (No. 2006026157)the Special Fund for Basic Scientific Research of Central Colleges, China University of Geosciences (Wuhan) (Nos. 2010029056, CUGL10024)
文摘The Yitong(伊通) basin is a Late Mesozoic and Cenozoic continental sedimentary basin in Northeast China.On the basis of well tests and seismic data,we use the 2D modeling technique to rebuild the pressure evolution and hydrocarbon migration in the Moliqing(莫里青) fault depression of the Yitong basin.Based on the modeling results,four conclusions are drawn as follows.(1) The Eocene Shuangyang(双阳) Formation within the Moliqing fault depression had entirely undergone three epi-sodic cycles of pressure accumulation and release in geological history,and the three tectonic move-ments since the Middle Eocene played important roles in the episodic changes of excess pressure.(2) The present formation pressure distribution is characterized by normal pressure in almost the entire fault depression with some residual overpressure.The differential distribution of pressure results mainly from the difference in rock facies,sedimentation rate,hydrocarbon generation,and fault activi-ties.(3) The hydrocarbon migration is more active during the release of pressure in the Moliqing fault depression,which happened mainly in the Middle-Late Oligocene and provided the driving force for hydrocarbon migration.(4) The hydrocarbon migration was mostly directed to the Shuangyang For-mation within the Jianshan(尖山) uplift and the Kaoshan(靠山) sag.With the superior condition ofhydrocarbon accumulation and the higher de-gree of hydrocarbon concentration,the north-west part of Kaoshan sag is considered a favor-able area for oil and gas exploration in the Moliqing fault depression.
基金financial support of Special Scientific Research Project of Public Welfare Industry of Ministry of Land and Resources (Grant No.20121111051)the National Natural Science Foundation of China (Grant No.41272159 and 41572099)+1 种基金supported by Anhui Provincial Natural Science Foundation (Grant No.1908085MD105)China Postdoctoral Science Foundation funded project (Grant No.2019M662200).
文摘The Songliao Basin is one of the most important petroliferous basins in northern China. With a recent gradual decline in conventional oil production in the basin, the exploration and development of unconventional resources are becoming increasingly urgent. The Qingshankou Formation consists of typical Upper Cretaceous continental strata, and represents a promising and practical replacement resource for shale oil in the Songliao Basin. Previous studies have shown that low-mature to mature Qingshankou shale mainly preserves type Ⅰ and type Ⅱ1 organic matter, with relatively high total organic carbon(TOC) content. It is estimated that there is a great potential to explore for shale oil resources in the Qingshankou Formation in this basin. However, not enough systematic research has been conducted on pore characteristics and their main controlling factors in this lacustrine shale reservoir. In this study, 19 Qingshankou shales from two wells drilled in the study area were tested and analyzed for mineral composition, pore distribution and feature evolution using Xray diffraction(XRD), scanning electron microscopy(SEM), low-pressure nitrogen gas adsorption(N2-GA), and thermal simulation experiments. The XRD results show that clay, quartz, and feldspar are the dominant mineral constituents of Qingshankou shale. The clay minerals are mostly illite/smectite mixed layers with a mean content of 83.5%, followed by illite, chlorite, and kaolinite. There are abundant deposits of clay-rich shale in the Qingshankou Formation in the study area, within which many mineral and organic matter pores were observed using SEM. Mineral pores contribute the most to shale porosity;specifically, clay mineral pores and carbonate pores comprise most of the mineral pores in the shale. Among the three types of organic matter pores, type B is more dominant the other two. Pores with diameters greater than 10 nm supply the main pore volume;most are half-open slits and wedge-shaped pores. The total pore volume had no obvious linear relationship with TOC content, but had some degree of positive correlation with the content of quartz + feldspar and clay minerals respectively. However, it was negatively correlated with carbonate mineral content. The specific surface area of the pores is negatively related to TOC content, average pore diameter, and carbonate mineral content. Moreover, it had a somewhat positive correlation with clay mineral content and no clear linear relationship with the content of quartz + feldspar. With increases in maturity, there was also an increase in the number of carbonate mineral dissolution pores and organic matter pores, average pore diameter, and pore volume, whereas there was a decrease in specific surface area of the pores. Generally, the Qingshankou shale is at a low-mature to mature stage with a TOC content of more than 1.0%, and could be as thick as 250 m in the study area. Pores with diameters of more than 10 nm are well-developed in the shale. This research illustrates that there are favorable conditions for shale oil occurrence and enrichment in the Qingshankou shale in the study area.
基金the State Key Basic Research Project(G1998040703)and China Seismological Bureau under the "Ninth Five-year Plan"(95-03-01),China.
文摘The relation between the dynamic evolution feature of gravity field and strong seismicity is studied. The result shows that the regional gravity field variation enjoys inhomogeneity of spatial and temporal distribution and gravity change in different regions. It may be resulted from active faults and seismogenic process, and may be due to microdynamic activity of regional strain energy, which might be accumulated or released in different stages, and there exists transformation process of stress.
文摘The intense uplift of the Qinghai-Xizang Plateau givesrise to drastic changes of natural environment and distinctdifferentiation of the Plateau proper. This paper focuses on theevolution of subtropical environment at low altitude to frigidenvironment at high altitude of the region since Pliocene and thechanges effected by cold-warm amplitude bf global change. Bycomparative study on the structure-type of the altitudinal belt, adistributional model diagram with close relevance to highlanduplift effect has been generalized. Based on regjonaldifferentiation of the Qinghai-Xizang Plateau, a number ofstriking geo-ecological phenomena such as moisture corridor, dryvalleys and high cold-arid core area are investigated anddiscussed.
文摘Based on the remote sensing survey and monitoring results of snow lines on the Qinghai-Tibet Plateau, the authors analyzed the following eco-geological factors such as water resources, permafrost, desertification, wetlands, lake, geological disasters, sea-level rising, earthquake, etc., affected by the change of snow lines over the past 40 years, and discuss the response between glacier evolution and the eco-geological environment preliminarily.
基金This project was supported by grants from the Ministry of Science and Technology(969140104)the General Bureau of Geology and Exploration under theformer CNNC(98-D-1).
文摘The formation, development and evolution of the Qinling orogenic belt can be divided into three stages: (1) formation and development of Precambrian basement in the Late Archaean-Palaeoproterozoic (3.0–1.6 Ga), (2) plate evolution (0.8–0.2 Ga), and (3) intracontinental orogeny and tectonic evolution in the Mesozoic.