The nature and origin of a fundamental quantum QSPR (QQSPR) equation are discussed. In principle, as any molecular structure can be associated to quantum mechanical density functions (DF), a molecular set can be r...The nature and origin of a fundamental quantum QSPR (QQSPR) equation are discussed. In principle, as any molecular structure can be associated to quantum mechanical density functions (DF), a molecular set can be reconstructed as a quantum multimolecular polyhedron (QMP), whose vertices are formed by each molecular DF. According to QQSPR theory, complicated kinds of molecular properties, like biological activity or toxicity, of molecular sets can be calculated via the quantum expectation value of an approximate Hermitian operator, which can be evaluated with the geometrical information contained in the attached QMP via quantum similarity matrices. Practical ways of solving the QQSPR problem from the point of view of QMP geometrical structure are provided. Such a development results into a powerful algorithm, which can be implemented within molecular design as an alternative to the current classical QSPR procedures.展开更多
With trade of over $100 billion in 2009, the importance of China and Africa bilateral exchanges are growing daily. This blooming relationship increases the need of understanding the ways of doing business.This regular...With trade of over $100 billion in 2009, the importance of China and Africa bilateral exchanges are growing daily. This blooming relationship increases the need of understanding the ways of doing business.This regular column will provide a practical insight of doing business in China, including tips and advice based on experience.展开更多
文摘The nature and origin of a fundamental quantum QSPR (QQSPR) equation are discussed. In principle, as any molecular structure can be associated to quantum mechanical density functions (DF), a molecular set can be reconstructed as a quantum multimolecular polyhedron (QMP), whose vertices are formed by each molecular DF. According to QQSPR theory, complicated kinds of molecular properties, like biological activity or toxicity, of molecular sets can be calculated via the quantum expectation value of an approximate Hermitian operator, which can be evaluated with the geometrical information contained in the attached QMP via quantum similarity matrices. Practical ways of solving the QQSPR problem from the point of view of QMP geometrical structure are provided. Such a development results into a powerful algorithm, which can be implemented within molecular design as an alternative to the current classical QSPR procedures.
文摘With trade of over $100 billion in 2009, the importance of China and Africa bilateral exchanges are growing daily. This blooming relationship increases the need of understanding the ways of doing business.This regular column will provide a practical insight of doing business in China, including tips and advice based on experience.