We investigate the boundary effect of quark–gluon plasma(QGP)droplets and the self-similarity effect of hadrons on QGP–hadron phase transition.In intermediate-or low-energy collisions,when the transverse momentum is...We investigate the boundary effect of quark–gluon plasma(QGP)droplets and the self-similarity effect of hadrons on QGP–hadron phase transition.In intermediate-or low-energy collisions,when the transverse momentum is below quantum chromodynamics(QCD)scale,QGP cannot be produced.However,if the transverse momentum changes to a relatively large value,a smallscale QGP droplet is produced.The modified MIT bag model with the multiple reflection expansion method is employed to study the QGP droplet with the curved boundary effect.It is found that the energy density,entropy density and pressure of QGP with the influence are smaller than those without the influence.In the hadron phase,we propose the two-body fractal model(TBFM)to study the self-similarity structure,arising from resonance,quantum correlation and interaction effects.It is observed that the energy density,entropy density and pressure increase due to the self-similarity structure.We calculate the transverse momentum spectra of pions with the self-similarity structure influence,which show good agreement with experimental data.Considering both boundary effect and self-similarity structure influence,our model predicts an increase in the transition temperature compared to the scenarios without these two effects in the High Intensity heavy-ion Accelerator Facility(HIAF)energy region,2.2 GeV to approximately 4.5 GeV.展开更多
We calculate the large mass dileptons production from the jet-dilepton conversion in spherical expanding quark-gluon plasma at Relativistic Heavy Ion Collider(RHIC) and Large Hadron Collider(LHC) energies.The jetd...We calculate the large mass dileptons production from the jet-dilepton conversion in spherical expanding quark-gluon plasma at Relativistic Heavy Ion Collider(RHIC) and Large Hadron Collider(LHC) energies.The jetdilepton production exceeds the thermal and Drell Yan dilepton production in the large mass region of 4.5 GeV展开更多
Initial values of the quark-gluon plasma system form relativistic nucleusnucleus collisions are discussed under thermodynamic equilibrium.From these initial values,the dependence of the dilepton production on the inci...Initial values of the quark-gluon plasma system form relativistic nucleusnucleus collisions are discussed under thermodynamic equilibrium.From these initial values,the dependence of the dilepton production on the incident energy of colliding nuclei has been studied based on the relativistic hydrodynamic model,and it is found that with increasing incident energy a characterstic plateau indicating the formatioin of the quark-gluon plasma appears in the total yield.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.12175031Guangdong Provincial Key Laboratory of Nuclear Science under Grant No.2019B121203010。
文摘We investigate the boundary effect of quark–gluon plasma(QGP)droplets and the self-similarity effect of hadrons on QGP–hadron phase transition.In intermediate-or low-energy collisions,when the transverse momentum is below quantum chromodynamics(QCD)scale,QGP cannot be produced.However,if the transverse momentum changes to a relatively large value,a smallscale QGP droplet is produced.The modified MIT bag model with the multiple reflection expansion method is employed to study the QGP droplet with the curved boundary effect.It is found that the energy density,entropy density and pressure of QGP with the influence are smaller than those without the influence.In the hadron phase,we propose the two-body fractal model(TBFM)to study the self-similarity structure,arising from resonance,quantum correlation and interaction effects.It is observed that the energy density,entropy density and pressure increase due to the self-similarity structure.We calculate the transverse momentum spectra of pions with the self-similarity structure influence,which show good agreement with experimental data.Considering both boundary effect and self-similarity structure influence,our model predicts an increase in the transition temperature compared to the scenarios without these two effects in the High Intensity heavy-ion Accelerator Facility(HIAF)energy region,2.2 GeV to approximately 4.5 GeV.
基金Supported by the Natural Science Foundation of the Education Department of Yunnan Province of China under Grant No.2012Y274Science Foundation of Dianxi Science and Technology Normal University under Grant No.LCSZL2013004
文摘We calculate the large mass dileptons production from the jet-dilepton conversion in spherical expanding quark-gluon plasma at Relativistic Heavy Ion Collider(RHIC) and Large Hadron Collider(LHC) energies.The jetdilepton production exceeds the thermal and Drell Yan dilepton production in the large mass region of 4.5 GeV
基金Supported by 95 Key Funds of the Chinese Academy of Sciences(KJ951-A1-410)National foundation of China No.19475060
文摘Initial values of the quark-gluon plasma system form relativistic nucleusnucleus collisions are discussed under thermodynamic equilibrium.From these initial values,the dependence of the dilepton production on the incident energy of colliding nuclei has been studied based on the relativistic hydrodynamic model,and it is found that with increasing incident energy a characterstic plateau indicating the formatioin of the quark-gluon plasma appears in the total yield.