In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC compon...In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC component code. Firstly, the sub-channel capacities of MLCM systems is analyzed and discussed, based on which the optimal component code rate can be obtained. Secondly, an extrinsic information transfer chart based two-stage searching algorithm is proposed to find the good irregular QC-LDPC code ensembles with optimal component code rates for their corresponding sub-channels. Finally, by constructing the irregular QC-LDPC component codes from the designed ensembles with the aim of possibly enlarging the girth and reducing the number of the shortest cycles, the designed irregular QC-LDPC code based 16QAM and 64QAM MLCM systems can achieve 0.4 dB and 1.2 dB net coding gain, respectively, compared with the recently proposed regular QC-LDPC code based 16QAM and 64QAM MLCM systems.展开更多
A construction method based on the p-plane to design high-girth quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed. Firstly the good points in every line of the p-plane can be ascertained through filt...A construction method based on the p-plane to design high-girth quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed. Firstly the good points in every line of the p-plane can be ascertained through filtering the bad points, because the designed parity-check matrixes using these points have the short cycles in Tanner graph of codes. Then one of the best points from the residual good points of every line in the p-plane will be found, respectively. The optimal point is also singled out according to the bit error rate (BER) performance of the QC-LDPC codes at last. Explicit necessary and sufficient conditions for the QC-LDPC codes to have no short cycles are presented which are in favor of removing the bad points in the p-plane. Since preventing the short cycles also prevents the small stopping sets, the proposed construction method also leads to QC-LDPC codes with a higher stopping distance.展开更多
卫星下行链路因其开放性、广域覆盖性而面临严峻的窃听威胁,传统以加密技术为核心的卫星下行链路防窃听方案在计算复杂度与抗量子攻击能力上存在双重瓶颈,且现有卫星下行链路物理层安全防窃听方案的应用场景存在局限性。针对以上问题,...卫星下行链路因其开放性、广域覆盖性而面临严峻的窃听威胁,传统以加密技术为核心的卫星下行链路防窃听方案在计算复杂度与抗量子攻击能力上存在双重瓶颈,且现有卫星下行链路物理层安全防窃听方案的应用场景存在局限性。针对以上问题,通过基于动态扩展因子的扰码与编码级联设计,提出一种基于信道状态信息(Channel State Information,CSI)和协作中继的卫星下行链路防窃听方案。首先,通过部署地面中继基站,建立基于协作中继的卫星下行链路通信模型,扩大合法链路与窃听链路的CSI随机性差异;其次,通过合法链路CSI对准循环低密度奇偶校验码扩展因子进行动态调控,增加编码随机性,进而增加窃听者译码难度;最后,通过动态扩展因子与合法链路CSI在卫星端与用户端构建加扰与解扰机制,使窃听者因缺乏合法链路CSI而无法解扰保密信息。仿真结果表明,在用户端误码率低至10-6的情况下,利用扰码对CSI的依赖性构建窃听者解扰壁垒,可使窃听者误码率接近0.5。所提方案凭借对CSI与地面协作中继的协同设计,既具备抵御量子计算攻击的潜在能力,又契合卫星通信网络工程部署对高效低耗的需求,能够有效平衡卫星下行链路信息传输可靠性与安全性的矛盾,可为未来6G空天地一体化场景下的信息安全传输提供具备工程实践价值的技术参考路径。展开更多
基金supported by National Natural Science Foundation of China(No.61571061)
文摘In this paper, we focus on the design of irregular QC-LDPC code based multi-level coded modulation(MLCM) scheme by jointly optimizing the component code rate and the degree distribution of the irregular QC-LDPC component code. Firstly, the sub-channel capacities of MLCM systems is analyzed and discussed, based on which the optimal component code rate can be obtained. Secondly, an extrinsic information transfer chart based two-stage searching algorithm is proposed to find the good irregular QC-LDPC code ensembles with optimal component code rates for their corresponding sub-channels. Finally, by constructing the irregular QC-LDPC component codes from the designed ensembles with the aim of possibly enlarging the girth and reducing the number of the shortest cycles, the designed irregular QC-LDPC code based 16QAM and 64QAM MLCM systems can achieve 0.4 dB and 1.2 dB net coding gain, respectively, compared with the recently proposed regular QC-LDPC code based 16QAM and 64QAM MLCM systems.
基金supported by the National Natural Science Foundation of China (60572093)Specialized Research Fund for the Doctoral Program of Higher Education (20050004016)
文摘A construction method based on the p-plane to design high-girth quasi-cyclic low-density parity-check (QC-LDPC) codes is proposed. Firstly the good points in every line of the p-plane can be ascertained through filtering the bad points, because the designed parity-check matrixes using these points have the short cycles in Tanner graph of codes. Then one of the best points from the residual good points of every line in the p-plane will be found, respectively. The optimal point is also singled out according to the bit error rate (BER) performance of the QC-LDPC codes at last. Explicit necessary and sufficient conditions for the QC-LDPC codes to have no short cycles are presented which are in favor of removing the bad points in the p-plane. Since preventing the short cycles also prevents the small stopping sets, the proposed construction method also leads to QC-LDPC codes with a higher stopping distance.
文摘卫星下行链路因其开放性、广域覆盖性而面临严峻的窃听威胁,传统以加密技术为核心的卫星下行链路防窃听方案在计算复杂度与抗量子攻击能力上存在双重瓶颈,且现有卫星下行链路物理层安全防窃听方案的应用场景存在局限性。针对以上问题,通过基于动态扩展因子的扰码与编码级联设计,提出一种基于信道状态信息(Channel State Information,CSI)和协作中继的卫星下行链路防窃听方案。首先,通过部署地面中继基站,建立基于协作中继的卫星下行链路通信模型,扩大合法链路与窃听链路的CSI随机性差异;其次,通过合法链路CSI对准循环低密度奇偶校验码扩展因子进行动态调控,增加编码随机性,进而增加窃听者译码难度;最后,通过动态扩展因子与合法链路CSI在卫星端与用户端构建加扰与解扰机制,使窃听者因缺乏合法链路CSI而无法解扰保密信息。仿真结果表明,在用户端误码率低至10-6的情况下,利用扰码对CSI的依赖性构建窃听者解扰壁垒,可使窃听者误码率接近0.5。所提方案凭借对CSI与地面协作中继的协同设计,既具备抵御量子计算攻击的潜在能力,又契合卫星通信网络工程部署对高效低耗的需求,能够有效平衡卫星下行链路信息传输可靠性与安全性的矛盾,可为未来6G空天地一体化场景下的信息安全传输提供具备工程实践价值的技术参考路径。