Stability is the key to inverse Q-filtering. In this paper we present a stable approach to inverse Q-filtering, based on the theory of wavefield downward continuation. It is implemented in a layered manner, assuming a...Stability is the key to inverse Q-filtering. In this paper we present a stable approach to inverse Q-filtering, based on the theory of wavefield downward continuation. It is implemented in a layered manner, assuming a layered-earth Q model. For each individual constant Q layer, the seismic wavefield recorded at the surface is first extrapolated down to the top of the current layer and a constant Q inverse filter is then applied to the current layer. When extrapolating within the overburden, a stable wavefield continuation algorithm in combination with a stabilization factor is applied. This avoids accumulating inverse Q-filter errors within the overburden. Within the current constant Q layer, we use Gabor spectral analysis on the signals to pick time-variant gain-constrained frequencies and then deduce the corresponding gain-constrained amplitudes to stabilize the inverse Q-filtering algorithm. The algorithm is tested and verified application to field data.展开更多
Due to the effects of seismic wave field interference, the reflection events generated from interbedded and superposed sand and shale strata no longer have an explicit corresponding relationship with the geological in...Due to the effects of seismic wave field interference, the reflection events generated from interbedded and superposed sand and shale strata no longer have an explicit corresponding relationship with the geological interface. The absorption of the near-surface layer decreases the resolution of the seismic wavelet, intensifies the interference of seismic reflections from different sand bodies, and makes seismic data interpretation of thin interbedded strata more complex and difficult. In order to concretely investigate and analyze the effects of the near-surface absorption on seismic reflection characteristics of interbedded strata, and to make clear the ability of current technologies to compensate the near-surface absorption, a geological model of continental interbedded strata with near-surface absorption was designed, and the prestack seismic wave field was numerically simulated with wave equations. Then, the simulated wave field was processed by the prestack time migration, the effects of near-surface absorption on prestack and poststack reflection characteristics were analyzed, and the near-surface absorption was compensated for by inverse Q-filtering. The model test shows that: (1) the reliability of prediction and delineation of a continental reservoir with AVO inversion is degraded due to the lateral variation of the near-surface structure; (2) the corresponding relationships between seismic reflection events and geological interfaces are further weakened as a result of near-surface absorption; and (3) the current technology of absorption compensation probably results in false geological structure and anomaly. Based on the model experiment, the real seismic data of the Dagang Oil Field were analyzed and processed. The seismic reflection characteristics of continental interbedded strata were improved, and the reliability of geological interpretation from seismic data was enhanced.展开更多
Attenuation compensation,which corrects the attenuation and dispersion of seismic waves,is one of the effective methods for improving seismic data resolution.In general,the attenuation compensation is achieved by an i...Attenuation compensation,which corrects the attenuation and dispersion of seismic waves,is one of the effective methods for improving seismic data resolution.In general,the attenuation compensation is achieved by an inverse Q-filter based on wave field continuation.In this paper,using the Futterman attenuation model,a method to compute synthetic seismogram is derived for an attenuation medium.Based on the synthetic method,the attenuation compensation problem is reduced to an inversion problem of the Fredholm integral equation and can be achieved by inversion.The Tikhonov regularization is used to improve inversion stability.The processing results of numerical simulation and real data show the effectiveness of the method.展开更多
Structural vibrations in Tip-Tilt modes usually affect the closed-loop performance of astronomically optical telescopes.In this paper,the state of art control methods—proportional integral(PI)control,linear quadratic...Structural vibrations in Tip-Tilt modes usually affect the closed-loop performance of astronomically optical telescopes.In this paper,the state of art control methods—proportional integral(PI)control,linear quadratic Gaussian(LQG)control,disturbance feed forward(DFF)control,and disturbance observer control(DOBC)of Tip-Tilt mirror to reject vibrations are first reviewed,and then compared systematically and comprehensively.Some mathematical transformations allow PI,LQG,DFF,and DOBC to be described in a uniform framework of sensitivity function that expresses their advantages and disadvantages.In essence,feed forward control based-inverse model is the main idea of current techniques,which is dependent on accuracies of models in terms of Tip-Tilt mirror and vibrations.DOBC can relax dependences on accuracy model,and therefore this survey concentrates on concise tutorials of this method with clear descriptions of their features in the control area of disturbance rejections.Its applications in various conditions are reviewed with emphasis on the effectiveness.Finally,the open problems,challenges and research prospects of DOBC of Tip-Tilt mirror are discussed.展开更多
基金This research is sponsored by the National"973"Project(No.2007CB209603)the"863"Project(No.2006AA06Z108)
文摘Stability is the key to inverse Q-filtering. In this paper we present a stable approach to inverse Q-filtering, based on the theory of wavefield downward continuation. It is implemented in a layered manner, assuming a layered-earth Q model. For each individual constant Q layer, the seismic wavefield recorded at the surface is first extrapolated down to the top of the current layer and a constant Q inverse filter is then applied to the current layer. When extrapolating within the overburden, a stable wavefield continuation algorithm in combination with a stabilization factor is applied. This avoids accumulating inverse Q-filter errors within the overburden. Within the current constant Q layer, we use Gabor spectral analysis on the signals to pick time-variant gain-constrained frequencies and then deduce the corresponding gain-constrained amplitudes to stabilize the inverse Q-filtering algorithm. The algorithm is tested and verified application to field data.
基金supported by the National 973 Key Basic Research Development Program(No. 2007CB209608)National 863 High Technology Research Development Program(No.2007AA06Z218)
文摘Due to the effects of seismic wave field interference, the reflection events generated from interbedded and superposed sand and shale strata no longer have an explicit corresponding relationship with the geological interface. The absorption of the near-surface layer decreases the resolution of the seismic wavelet, intensifies the interference of seismic reflections from different sand bodies, and makes seismic data interpretation of thin interbedded strata more complex and difficult. In order to concretely investigate and analyze the effects of the near-surface absorption on seismic reflection characteristics of interbedded strata, and to make clear the ability of current technologies to compensate the near-surface absorption, a geological model of continental interbedded strata with near-surface absorption was designed, and the prestack seismic wave field was numerically simulated with wave equations. Then, the simulated wave field was processed by the prestack time migration, the effects of near-surface absorption on prestack and poststack reflection characteristics were analyzed, and the near-surface absorption was compensated for by inverse Q-filtering. The model test shows that: (1) the reliability of prediction and delineation of a continental reservoir with AVO inversion is degraded due to the lateral variation of the near-surface structure; (2) the corresponding relationships between seismic reflection events and geological interfaces are further weakened as a result of near-surface absorption; and (3) the current technology of absorption compensation probably results in false geological structure and anomaly. Based on the model experiment, the real seismic data of the Dagang Oil Field were analyzed and processed. The seismic reflection characteristics of continental interbedded strata were improved, and the reliability of geological interpretation from seismic data was enhanced.
基金supported by National Basic Research Program of China (Grant No. 2007CB209604)National Science and Technology Major Project (Grant No. 2008ZX05024-001-11)
文摘Attenuation compensation,which corrects the attenuation and dispersion of seismic waves,is one of the effective methods for improving seismic data resolution.In general,the attenuation compensation is achieved by an inverse Q-filter based on wave field continuation.In this paper,using the Futterman attenuation model,a method to compute synthetic seismogram is derived for an attenuation medium.Based on the synthetic method,the attenuation compensation problem is reduced to an inversion problem of the Fredholm integral equation and can be achieved by inversion.The Tikhonov regularization is used to improve inversion stability.The processing results of numerical simulation and real data show the effectiveness of the method.
文摘Structural vibrations in Tip-Tilt modes usually affect the closed-loop performance of astronomically optical telescopes.In this paper,the state of art control methods—proportional integral(PI)control,linear quadratic Gaussian(LQG)control,disturbance feed forward(DFF)control,and disturbance observer control(DOBC)of Tip-Tilt mirror to reject vibrations are first reviewed,and then compared systematically and comprehensively.Some mathematical transformations allow PI,LQG,DFF,and DOBC to be described in a uniform framework of sensitivity function that expresses their advantages and disadvantages.In essence,feed forward control based-inverse model is the main idea of current techniques,which is dependent on accuracies of models in terms of Tip-Tilt mirror and vibrations.DOBC can relax dependences on accuracy model,and therefore this survey concentrates on concise tutorials of this method with clear descriptions of their features in the control area of disturbance rejections.Its applications in various conditions are reviewed with emphasis on the effectiveness.Finally,the open problems,challenges and research prospects of DOBC of Tip-Tilt mirror are discussed.