We report the characterization of a uracil-DNA glycosylase(UDG) from the hyperthermophilic archaea Pyrococcus furiosus(P, furiosus). P. furiosus UDG(PfUDG) has high sequence similarity to the families IV and V U...We report the characterization of a uracil-DNA glycosylase(UDG) from the hyperthermophilic archaea Pyrococcus furiosus(P, furiosus). P. furiosus UDG(PfUDG) has high sequence similarity to the families IV and V UDGs(thermostable UDG family and PaUDG-b family). PfUDG excises uracil from various DNA substrates with the following order: U/T=U/C〉U/G=U/AP=U/-〉U/U=U/I=U/A. The optimal temperature and pH value for uracil exci- sion by PfUDG are 70 ℃ and 9.0, respectively. The removal of U is inhibited by the divalent ions of Fe, Ca, Zn, Cu, Co, Ni and Mn, as well as a high concentration of NaC1. The phosphorothioates near uracil strongly inhibit the exci- sion of uracil by PfUDG. Interestingly, pfuDNA(Pyrococcusfuriosus DNA) polymerase, which tightly binds the ura- cil-carrying oligonucleotide, does not inhibit the excision by Pfl.IDG, suggesting PfUDG in vivo functions as the re- pair enzyme to excise uracil damage in genome.展开更多
RNA methyltransferase is responsible for transferring methyl and resulting in methylation on the bases or ribose ring of RNA, which existed widely but mostly remains an open question. A recombinant protein PH1948 pred...RNA methyltransferase is responsible for transferring methyl and resulting in methylation on the bases or ribose ring of RNA, which existed widely but mostly remains an open question. A recombinant protein PH1948 predicting RNA methyl- transferase from Pyrococcus horikoshii OT3 has been crystallized. The crystals of selenomethionyl PH1948 belong to space group C2, with unit-cell parameters a=207.0 ?, b=43.1 ?, c=118.2 ?, β=92.1°, and diffract X-rays to 2.2 ? resolution. The VM value was determined to be 2.8 ?3/Da, indicating the presence of four protein molecules in the asymmetric unit.展开更多
With rapid developments of emerging technologies like synthetic biology,the demand for DNA polymerases with superior activities including higher thermostability and processivity has increased significantly.Thus,ration...With rapid developments of emerging technologies like synthetic biology,the demand for DNA polymerases with superior activities including higher thermostability and processivity has increased significantly.Thus,rational optimization of the performance of DNA polymerase is of great interest.Nuclear magnetic resonance(NMR)spectroscopy is a powerful technique used for studying protein structure and dynamics.It provides the atomic resolution information of enzymes under their functional solution environment to reveal the active sites(hot spots)of the enzyme,which could be further used for optimizing the performance of enzymes.In our previous work,we identified hot spot residues of Pyrococcus furiosus DNA polymerase(Pfu pol).We aim to employ these binding hot spots to screen for co-factors of Pfu pol,particularly targeting those molecules exhibiting weak intermolecular interactions.To validate this concept,we first demonstrated the feasibility of utilizing hot spot residues as screening probes for auxiliary factors by employing the well-characterized Tween-20 as a model system.Employing these hot spots as probes,two new co-factors,the heat shock protein TkHSP20 from Thermococcus Kodakaraensis and the chemical chaperone L-arginine,are identified to interact with Pfu pol to boost its performance in amplifying long DNA fragments by enhancing the thermal stability and the processivity of the Pfu pol.This NMR-based approach requires no prior assignment information of target enzymes,guiding the rational exploration of novel cofactors for Pfu pol.Moreover,our approach is not dependent on structural data or bioinformatics.Therefore,it has significant potential for application in various enzymes to expedite the progress in enzyme engineering.展开更多
基金Supported by the National High Technology Research and Development Program of China(No.2006AA02Z108)the National Basic Research Program of China(No.2009CB118906)the National Natural Science Foundation of China(Nos.30700131,30870512)
文摘We report the characterization of a uracil-DNA glycosylase(UDG) from the hyperthermophilic archaea Pyrococcus furiosus(P, furiosus). P. furiosus UDG(PfUDG) has high sequence similarity to the families IV and V UDGs(thermostable UDG family and PaUDG-b family). PfUDG excises uracil from various DNA substrates with the following order: U/T=U/C〉U/G=U/AP=U/-〉U/U=U/I=U/A. The optimal temperature and pH value for uracil exci- sion by PfUDG are 70 ℃ and 9.0, respectively. The removal of U is inhibited by the divalent ions of Fe, Ca, Zn, Cu, Co, Ni and Mn, as well as a high concentration of NaC1. The phosphorothioates near uracil strongly inhibit the exci- sion of uracil by PfUDG. Interestingly, pfuDNA(Pyrococcusfuriosus DNA) polymerase, which tightly binds the ura- cil-carrying oligonucleotide, does not inhibit the excision by Pfl.IDG, suggesting PfUDG in vivo functions as the re- pair enzyme to excise uracil damage in genome.
基金Project supported by the National Project on Protein Structural and Functional Analyses from the Ministry of Education, Culture, Sports, Science, and Technology of Japan
文摘RNA methyltransferase is responsible for transferring methyl and resulting in methylation on the bases or ribose ring of RNA, which existed widely but mostly remains an open question. A recombinant protein PH1948 predicting RNA methyl- transferase from Pyrococcus horikoshii OT3 has been crystallized. The crystals of selenomethionyl PH1948 belong to space group C2, with unit-cell parameters a=207.0 ?, b=43.1 ?, c=118.2 ?, β=92.1°, and diffract X-rays to 2.2 ? resolution. The VM value was determined to be 2.8 ?3/Da, indicating the presence of four protein molecules in the asymmetric unit.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences XDB0540000Natural Science Foundation of China grants 22327901,22174151 and 21991080Hubei Provincial Natural Science Foundation of China 2023AFA041。
文摘With rapid developments of emerging technologies like synthetic biology,the demand for DNA polymerases with superior activities including higher thermostability and processivity has increased significantly.Thus,rational optimization of the performance of DNA polymerase is of great interest.Nuclear magnetic resonance(NMR)spectroscopy is a powerful technique used for studying protein structure and dynamics.It provides the atomic resolution information of enzymes under their functional solution environment to reveal the active sites(hot spots)of the enzyme,which could be further used for optimizing the performance of enzymes.In our previous work,we identified hot spot residues of Pyrococcus furiosus DNA polymerase(Pfu pol).We aim to employ these binding hot spots to screen for co-factors of Pfu pol,particularly targeting those molecules exhibiting weak intermolecular interactions.To validate this concept,we first demonstrated the feasibility of utilizing hot spot residues as screening probes for auxiliary factors by employing the well-characterized Tween-20 as a model system.Employing these hot spots as probes,two new co-factors,the heat shock protein TkHSP20 from Thermococcus Kodakaraensis and the chemical chaperone L-arginine,are identified to interact with Pfu pol to boost its performance in amplifying long DNA fragments by enhancing the thermal stability and the processivity of the Pfu pol.This NMR-based approach requires no prior assignment information of target enzymes,guiding the rational exploration of novel cofactors for Pfu pol.Moreover,our approach is not dependent on structural data or bioinformatics.Therefore,it has significant potential for application in various enzymes to expedite the progress in enzyme engineering.