The generation of high-quality,realistic face generation has emerged as a key field of research in computer vision.This paper proposes a robust approach that combines a Super-Resolution Generative Adversarial Network(...The generation of high-quality,realistic face generation has emerged as a key field of research in computer vision.This paper proposes a robust approach that combines a Super-Resolution Generative Adversarial Network(SRGAN)with a Pyramid Attention Module(PAM)to enhance the quality of deep face generation.The SRGAN framework is designed to improve the resolution of generated images,addressing common challenges such as blurriness and a lack of intricate details.The Pyramid Attention Module further complements the process by focusing on multi-scale feature extraction,enabling the network to capture finer details and complex facial features more effectively.The proposed method was trained and evaluated over 100 epochs on the CelebA dataset,demonstrating consistent improvements in image quality and a marked decrease in generator and discriminator losses,reflecting the model’s capacity to learn and synthesize high-quality images effectively,given adequate computational resources.Experimental outcome demonstrates that the SRGAN model with PAM module has outperformed,yielding an aggregate discriminator loss of 0.055 for real,0.043 for fake,and a generator loss of 10.58 after training for 100 epochs.The model has yielded an structural similarity index measure of 0.923,that has outperformed the other models that are considered in the current study for analysis.展开更多
Pest detection techniques are helpful in reducing the frequency and scale of pest outbreaks;however,their application in the actual agricultural production process is still challenging owing to the problems of intersp...Pest detection techniques are helpful in reducing the frequency and scale of pest outbreaks;however,their application in the actual agricultural production process is still challenging owing to the problems of interspecies similarity,multi-scale,and background complexity of pests.To address these problems,this study proposes an FD-YOLO pest target detection model.The FD-YOLO model uses a Fully Connected Feature Pyramid Network(FC-FPN)instead of a PANet in the neck,which can adaptively fuse multi-scale information so that the model can retain small-scale target features in the deep layer,enhance large-scale target features in the shallow layer,and enhance the multiplexing of effective features.A dual self-attention module(DSA)is then embedded in the C3 module of the neck,which captures the dependencies between the information in both spatial and channel dimensions,effectively enhancing global features.We selected 16 types of pests that widely damage field crops in the IP102 pest dataset,which were used as our dataset after data supplementation and enhancement.The experimental results showed that FD-YOLO’s mAP@0.5 improved by 6.8%compared to YOLOv5,reaching 82.6%and 19.1%–5%better than other state-of-the-art models.This method provides an effective new approach for detecting similar or multiscale pests in field crops.展开更多
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les...Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(*MSIT)(No.2018R1A5A7059549).
文摘The generation of high-quality,realistic face generation has emerged as a key field of research in computer vision.This paper proposes a robust approach that combines a Super-Resolution Generative Adversarial Network(SRGAN)with a Pyramid Attention Module(PAM)to enhance the quality of deep face generation.The SRGAN framework is designed to improve the resolution of generated images,addressing common challenges such as blurriness and a lack of intricate details.The Pyramid Attention Module further complements the process by focusing on multi-scale feature extraction,enabling the network to capture finer details and complex facial features more effectively.The proposed method was trained and evaluated over 100 epochs on the CelebA dataset,demonstrating consistent improvements in image quality and a marked decrease in generator and discriminator losses,reflecting the model’s capacity to learn and synthesize high-quality images effectively,given adequate computational resources.Experimental outcome demonstrates that the SRGAN model with PAM module has outperformed,yielding an aggregate discriminator loss of 0.055 for real,0.043 for fake,and a generator loss of 10.58 after training for 100 epochs.The model has yielded an structural similarity index measure of 0.923,that has outperformed the other models that are considered in the current study for analysis.
基金funded by Liaoning Provincial Department of Education Project,Award number JYTMS20230418.
文摘Pest detection techniques are helpful in reducing the frequency and scale of pest outbreaks;however,their application in the actual agricultural production process is still challenging owing to the problems of interspecies similarity,multi-scale,and background complexity of pests.To address these problems,this study proposes an FD-YOLO pest target detection model.The FD-YOLO model uses a Fully Connected Feature Pyramid Network(FC-FPN)instead of a PANet in the neck,which can adaptively fuse multi-scale information so that the model can retain small-scale target features in the deep layer,enhance large-scale target features in the shallow layer,and enhance the multiplexing of effective features.A dual self-attention module(DSA)is then embedded in the C3 module of the neck,which captures the dependencies between the information in both spatial and channel dimensions,effectively enhancing global features.We selected 16 types of pests that widely damage field crops in the IP102 pest dataset,which were used as our dataset after data supplementation and enhancement.The experimental results showed that FD-YOLO’s mAP@0.5 improved by 6.8%compared to YOLOv5,reaching 82.6%and 19.1%–5%better than other state-of-the-art models.This method provides an effective new approach for detecting similar or multiscale pests in field crops.
文摘Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors.