期刊文献+
共找到122篇文章
< 1 2 7 >
每页显示 20 50 100
Super-Resolution Generative Adversarial Network with Pyramid Attention Module for Face Generation
1
作者 Parvathaneni Naga Srinivasu G.JayaLakshmi +4 位作者 Sujatha Canavoy Narahari Victor Hugo C.de Albuquerque Muhammad Attique Khan Hee-Chan Cho Byoungchol Chang 《Computers, Materials & Continua》 2025年第10期2117-2139,共23页
The generation of high-quality,realistic face generation has emerged as a key field of research in computer vision.This paper proposes a robust approach that combines a Super-Resolution Generative Adversarial Network(... The generation of high-quality,realistic face generation has emerged as a key field of research in computer vision.This paper proposes a robust approach that combines a Super-Resolution Generative Adversarial Network(SRGAN)with a Pyramid Attention Module(PAM)to enhance the quality of deep face generation.The SRGAN framework is designed to improve the resolution of generated images,addressing common challenges such as blurriness and a lack of intricate details.The Pyramid Attention Module further complements the process by focusing on multi-scale feature extraction,enabling the network to capture finer details and complex facial features more effectively.The proposed method was trained and evaluated over 100 epochs on the CelebA dataset,demonstrating consistent improvements in image quality and a marked decrease in generator and discriminator losses,reflecting the model’s capacity to learn and synthesize high-quality images effectively,given adequate computational resources.Experimental outcome demonstrates that the SRGAN model with PAM module has outperformed,yielding an aggregate discriminator loss of 0.055 for real,0.043 for fake,and a generator loss of 10.58 after training for 100 epochs.The model has yielded an structural similarity index measure of 0.923,that has outperformed the other models that are considered in the current study for analysis. 展开更多
关键词 Artificial intelligence generative adversarial network pyramid attention module face generation deep learning
在线阅读 下载PDF
PAM结合TCN优化Transformer的光伏功率预测研究
2
作者 张红 李峰 +2 位作者 马彦宏 姬文宣 郑启鹏 《计算机工程》 北大核心 2025年第10期140-149,共10页
准确的光伏功率预测对于提高电网稳定性和用电效率至关重要。针对现有研究难以同时考虑光伏功率长期依赖性和短期变化模式的缺陷,提出一种金字塔注意力模块(PAM)结合时间卷积网络(TCN)优化Transformer的光伏功率预测方法Solarformer。... 准确的光伏功率预测对于提高电网稳定性和用电效率至关重要。针对现有研究难以同时考虑光伏功率长期依赖性和短期变化模式的缺陷,提出一种金字塔注意力模块(PAM)结合时间卷积网络(TCN)优化Transformer的光伏功率预测方法Solarformer。基于多种特征选择机制筛选输入特征,增强对光伏数据特征的表征能力;利用粗粒度构造模块和PAM优化Transformer编码器,在多尺度上捕获光伏功率的长期时间依赖特征;利用光伏功率日出日落效应约束机制和TCN优化Transformer解码器,增强光伏功率的短期变化特征,以更好地捕捉其短期变化模式。在澳大利亚Sanyo数据集上进行实验,结果表明,Solarformer能够有效提高光伏功率的预测精度,相比DLinear模型,其均方根误差(RMSE)、平均绝对误差(MAE)和对称平均绝对百分比误差(SMAPE)分别降低了约7.45%、6.99%和14.10%。 展开更多
关键词 光伏功率预测 Transformer模型 金字塔注意力模块 约束机制 时间卷积网络
在线阅读 下载PDF
Double Self-Attention Based Fully Connected Feature Pyramid Network for Field Crop Pest Detection
3
作者 Zijun Gao Zheyi Li +2 位作者 Chunqi Zhang Ying Wang Jingwen Su 《Computers, Materials & Continua》 2025年第6期4353-4371,共19页
Pest detection techniques are helpful in reducing the frequency and scale of pest outbreaks;however,their application in the actual agricultural production process is still challenging owing to the problems of intersp... Pest detection techniques are helpful in reducing the frequency and scale of pest outbreaks;however,their application in the actual agricultural production process is still challenging owing to the problems of interspecies similarity,multi-scale,and background complexity of pests.To address these problems,this study proposes an FD-YOLO pest target detection model.The FD-YOLO model uses a Fully Connected Feature Pyramid Network(FC-FPN)instead of a PANet in the neck,which can adaptively fuse multi-scale information so that the model can retain small-scale target features in the deep layer,enhance large-scale target features in the shallow layer,and enhance the multiplexing of effective features.A dual self-attention module(DSA)is then embedded in the C3 module of the neck,which captures the dependencies between the information in both spatial and channel dimensions,effectively enhancing global features.We selected 16 types of pests that widely damage field crops in the IP102 pest dataset,which were used as our dataset after data supplementation and enhancement.The experimental results showed that FD-YOLO’s mAP@0.5 improved by 6.8%compared to YOLOv5,reaching 82.6%and 19.1%–5%better than other state-of-the-art models.This method provides an effective new approach for detecting similar or multiscale pests in field crops. 展开更多
关键词 Pest detection YOLOv5 feature pyramid network transformer attention module
在线阅读 下载PDF
回环结构与PAM结合的双目图像超分辨率网络 被引量:1
4
作者 李雪 张红英 +1 位作者 吴亚东 廉炜雯 《计算机工程与应用》 CSCD 北大核心 2022年第17期239-248,共10页
双目图像第二视点为图像超分辨率重建网络提供更多的细节信息,为更充分利用双目图像的互补信息,提出一种基于深度学习的回环结构与视差注意力模块(PAM)相结合的双目图像超分辨率重建网络。该网络特征提取模块由MJR-ASPP+构成的回环结构... 双目图像第二视点为图像超分辨率重建网络提供更多的细节信息,为更充分利用双目图像的互补信息,提出一种基于深度学习的回环结构与视差注意力模块(PAM)相结合的双目图像超分辨率重建网络。该网络特征提取模块由MJR-ASPP+构成的回环结构与扩张残差块交替级联而成,回环结构中混合跳跃式残差(MJR)能聚合网络中不同深度的信息,改进空洞空间金字塔池化块(ASPP+)用于提取图像多尺度特征,扩张残差块融合多级特征的同时有效去噪;引入视差注意力模块获取双目图像中的全局对应关系,集成图像对的有用信息;通过亚像素层重建出超分辨率左(右)图,并将FReLU用于整个网络中提高捕获空间相关性效率。该网络在Middlebury、KITTI2012、KITTI2015和Flickr1024四个公开数据集中都取得了优异结果,实验结果表明该网络具有更好的超分辨率性能。 展开更多
关键词 双目图像超分辨率重建 深度学习 回环结构 视差注意力模块 混合跳跃式残差 空洞空间金字塔池化
在线阅读 下载PDF
Two-Layer Attention Feature Pyramid Network for Small Object Detection
5
作者 Sheng Xiang Junhao Ma +2 位作者 Qunli Shang Xianbao Wang Defu Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期713-731,共19页
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les... Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors. 展开更多
关键词 Small object detection two-layer attention module small object detail enhancement module feature pyramid network
在线阅读 下载PDF
一种基于元学习的改进YOLO钢管表面缺陷小样本检测模型 被引量:3
6
作者 李凌波 田彦 +1 位作者 江旭东 董宝力 《机电工程》 北大核心 2025年第5期985-993,共9页
针对产品表面缺陷样本数稀缺时的深度学习缺陷检测效果不佳问题,提出了一种基于元学习策略的改进YOLO-SBN模型,用于小样本缺陷检测。首先,为了提高提取全局特征信息的能力,采用了Swin Transformer作为骨干网络模型,引入注意力机制提取... 针对产品表面缺陷样本数稀缺时的深度学习缺陷检测效果不佳问题,提出了一种基于元学习策略的改进YOLO-SBN模型,用于小样本缺陷检测。首先,为了提高提取全局特征信息的能力,采用了Swin Transformer作为骨干网络模型,引入注意力机制提取了特征图的判别能力;然后,为了提高特征融合能力并降低计算复杂度,通过加权双向特征金字塔网络(BiFPN)结构优化了特征提取器的颈部网络,平衡了YOLO-SBN模型的有效性和效率;最后,采用归一化注意力模块(NAM)优化权重调整了模块,增强了浅层缺陷特征的模型表达,并基于这些增强的特征进行了检测;使用金属表面热轧缺陷公开数据集NEU-DET验证了YOLO-SBN模型的算法性能。研究结果表明:对于小样本缺陷检测,YOLO-SBN模型在平均准确率(mAP)方面提高了4.1%;在新类缺陷样本规模数量为50的小样本情况下,改进后的检测模型对新类数据适应性最强。由此可见,该YOLO-SBN模型在提高检测精度和提升模型泛化能力方面具有一定优势。 展开更多
关键词 小样本目标检测 表面缺陷 元学习 特征网络 归一化注意力模块 平均准确率 双向特征金字塔网络(BiFPN)
在线阅读 下载PDF
基于深度融合网络研究糖尿病视网膜病变 被引量:2
7
作者 张颖 赵祺旸 郗群 《中国医学物理学杂志》 2025年第3期347-355,共9页
基于深度学习提出一种融合网络,旨在高效、准确地辅助诊断糖尿病性视网膜病。采用数据增强技术与生成对抗网络相结合的手段,对EyePACS数据集内的眼底图像实施扩充操作,有效应对眼底图像分类不均衡的难题。使用Inception-Resnet-V2作为... 基于深度学习提出一种融合网络,旨在高效、准确地辅助诊断糖尿病性视网膜病。采用数据增强技术与生成对抗网络相结合的手段,对EyePACS数据集内的眼底图像实施扩充操作,有效应对眼底图像分类不均衡的难题。使用Inception-Resnet-V2作为主网络,并融入深度残差收缩网络和金字塔分割注意力模块,有效地过滤掉特征学习过程中的无关信息,聚焦病灶信息,提高网络对重要特征的抓取能力。实验结果显示该优化模型能在无需事先指明病变特征的情况下,准确率、召回率、特异性、灵敏度以及F1分数达到0.951、0.950、0.990、0.950、0.950,表明本文模型在评价指标上都有较好的性能。 展开更多
关键词 糖尿病视网膜病变 深度学习 深度残差收缩网络 金字塔分割注意力模块
暂未订购
基于多模态融合的抗噪声故障诊断方法
8
作者 宋庆军 孙世荣 +3 位作者 宋庆辉 陆丽娜 陈俊龙 姜海燕 《机电工程》 北大核心 2025年第11期2129-2140,共12页
随着工业设备运行环境日益复杂,在噪声环境下的故障诊断中,单一模态的数据往往无法提供全面且准确的故障信息,为此,提出了基于多模态融合的抗噪声故障诊断方法(MMFD),旨在提高噪声干扰环境下的故障诊断性能。首先,分别使用了改进型GAF角... 随着工业设备运行环境日益复杂,在噪声环境下的故障诊断中,单一模态的数据往往无法提供全面且准确的故障信息,为此,提出了基于多模态融合的抗噪声故障诊断方法(MMFD),旨在提高噪声干扰环境下的故障诊断性能。首先,分别使用了改进型GAF角场(GAGM)转换方法和变分模态分解(VMD)对振动信号进行了预处理;然后,时序信号通过双向门控循环单元(BIGRU)与多头注意力机制(MA)协同捕获动态时序特征;接着,将振动信号编码为二维图谱,并设计了多尺度卷积网络(MCNN)集成空洞空间金字塔池化(ASPP)和卷积注意力模块(CBAM),以提取空间深层特征;为强化跨模态特征融合,设计了特征交互网络(FIN)实现时频特征的深度交互,并构建了门控多模态单元(GMU)动态加权多源特征,挖掘了多模态数据间的互补信息;最后,采用了凯斯西储大学轴承故障数据集进行了多组鲁棒性实验。研究结果表明:在强噪声环境(信噪比为-6 dB)下,MMFD相比于其他故障诊断方法,诊断准确率提升超过10%;此外,MMFD在不同信噪比下均能保持80%以上的准确率。该研究为复杂噪声环境中的智能故障诊断提供了一种新的思路。 展开更多
关键词 格拉姆角场 空洞空间金字塔池化模块 多头注意力机制 双向门控循环单元 卷积注意力模块 特征交互网络 门控多模态单元
在线阅读 下载PDF
改进U-Net模型的隧道掌子面图像语义分割研究
9
作者 陈登峰 程静 +1 位作者 赵蕾 何拓航 《防灾减灾工程学报》 北大核心 2025年第4期776-783,共8页
隧道掌子面岩体结构是判断岩土工程地质条件、制定施工和支护方案、预防塌方及涌水等事故的直观依据。将U-Net模型应用于掌子面岩体结构图像分割与识别时,下采样过程中缩小图像尺寸会导致岩体部分细节信息丢失,上采样过程中将低层特征... 隧道掌子面岩体结构是判断岩土工程地质条件、制定施工和支护方案、预防塌方及涌水等事故的直观依据。将U-Net模型应用于掌子面岩体结构图像分割与识别时,下采样过程中缩小图像尺寸会导致岩体部分细节信息丢失,上采样过程中将低层特征传递到高层的跳跃连接导致特征映射过大。因此,提出加入空洞空间卷积池化金字塔模块ASPP和卷积注意力模块CBAM的改进U-Net模型。在U-Net模型的跳跃连接过程中加ASPP,利用不同膨胀率的空洞卷积捕获不同尺度的上下文信息,融合不同感受野的信息,从而更全面的理解图像内容;U-Net模型的下采样过程中加入CBAM,使网络模型更加关注有用的特征,从而增强特征的表达能力。实验结果表明,改进的网络模型相较于原始U-Net模型分割和识别性能有显著提升,在某隧道工程掌子面岩体图像数据集上Precision达到93.04%,mIoU达到74.98%,mPA达到78.89%。 展开更多
关键词 隧道掌子面 图像语义分割 卷积注意力模块 空洞空间卷积池化金字塔模块
原文传递
不良光照场景下的交通标志识别算法
10
作者 党宏社 肖利霞 张选德 《半导体光电》 北大核心 2025年第1期142-148,共7页
交通标志识别技术作为自动驾驶系统的核心组件,在保障行车安全方面具有重要作用。为改善不良光照场景下交通标志的自动识别效果,提出了一种基于改进NanoDet的交通标志识别算法。该算法以NanoDet模型为基础,首先,在主干网络集成SSM模块与... 交通标志识别技术作为自动驾驶系统的核心组件,在保障行车安全方面具有重要作用。为改善不良光照场景下交通标志的自动识别效果,提出了一种基于改进NanoDet的交通标志识别算法。该算法以NanoDet模型为基础,首先,在主干网络集成SSM模块与CBAM注意力机制,有效提高模型在不良光照场景下的识别精度;其次,构建加权双向特征金字塔网络强化多尺度特征融合;最后,将AGM模块中的标准卷积替换为深度可分离卷积,在保证感受野的同时显著降低模型参数量。基于扩充版CCTSDB数据集的实验表明,该算法在保持138.2帧/s实时处理速度的前提下,识别精度为90.2%,相较基准模型提升4.7个百分点。 展开更多
关键词 交通标志识别 不良光照 注意力模块 特征金字塔 深度可分离卷积
原文传递
基于改进YOLOX的隧道火灾检测算法
11
作者 马庆禄 邱高建 白锋 《中国安全科学学报》 北大核心 2025年第4期28-34,共7页
针对隧道初期火灾检测中存在的复杂环境干扰和低识别率问题,提出一种基于改进YOLOX算法的检测方法YOLOX-T。该方法在YOLOX中引入归一化注意力模块(NAM)机制来抑制环境噪声和干扰,提高系统的鲁棒性及识别的精确性;引入加权双向特征金字... 针对隧道初期火灾检测中存在的复杂环境干扰和低识别率问题,提出一种基于改进YOLOX算法的检测方法YOLOX-T。该方法在YOLOX中引入归一化注意力模块(NAM)机制来抑制环境噪声和干扰,提高系统的鲁棒性及识别的精确性;引入加权双向特征金字塔网络(BiFPN)增强特征提取和融合能力,优化α-交并比(IoU)损失函数,以提高对轮廓特征不明显的隧道初期烟雾火焰的检测精度;在现有公开数据集不足的情况下,通过网络采集、模拟试验和扩充现有数据集,构建隧道火灾数据集,在包含真实场景和模拟场景的自建隧道火灾数据集上进行验证。结果表明:相比于原始YOLOX模型,改进后的算法均值平均精度(mAP@0.5)提高1.89%,mAP@0.5~0.95提高0.88%,精确率提高4.57%,召回率提高5.45%,改进后的算法能够实现更优的检测性能。 展开更多
关键词 隧道火灾 YOLOX 火灾检测 归一化注意力模块(NAM) 加权双向特征金字塔网络(BiFPN)
原文传递
基于改进ResNet50的中药材分类识别 被引量:4
12
作者 葛琪 吴丽丽 康立军 《软件工程》 2025年第4期16-21,共6页
为了提升中药材图片分类的准确率,提出了一种基于改进ResNet50的中药材分类识别方法。首先,引入了卷积块注意力模块(Convolutional Block Attention Module,CBAM),增强了模型对中药材特定特征的识别能力。其次,对标准的ResNet50中的卷... 为了提升中药材图片分类的准确率,提出了一种基于改进ResNet50的中药材分类识别方法。首先,引入了卷积块注意力模块(Convolutional Block Attention Module,CBAM),增强了模型对中药材特定特征的识别能力。其次,对标准的ResNet50中的卷积快捷连接进行了优化,减少了特征图的信息损失。最后,在模型后端集成了金字塔池化模块(Pyramid Pooling Module,PPM),该模块能整合多尺度的上下文信息,显著增强了模型捕获全局特征的能力。实验结果表明,相较于原模型及VGG16,改进后的模型在中药材识别上达到了94.75%的准确率,为中药材分类领域的后续研究工作提供了支持及优化的方向。 展开更多
关键词 中药材图像分类 ResNet50 CBAM注意力模块 PPM金字塔池化
在线阅读 下载PDF
基于改进YOLOv5的玉米植株检测与识别研究 被引量:1
13
作者 崔岩 庄卫东 +1 位作者 秦韬 王楠 《中国农机化学报》 北大核心 2025年第6期136-141,共6页
为解决机械除草伤苗的问题,提出一种改进YOLOv5的玉米植株检测方法。建立复杂田间环境下的玉米植株数据集,在原有模型的基础上在Backbone和Head层增加坐标注意力(CA)机制,通过动态加权的方式提升对于玉米植株位置信息的关注度,强化位置... 为解决机械除草伤苗的问题,提出一种改进YOLOv5的玉米植株检测方法。建立复杂田间环境下的玉米植株数据集,在原有模型的基础上在Backbone和Head层增加坐标注意力(CA)机制,通过动态加权的方式提升对于玉米植株位置信息的关注度,强化位置信息,提升检测准确度,在Neck层采用加权双向特征金字塔网络(BiFPN),加强特征融合,提高检测速度和检测精确度。试验结果表明,与原始模型相比,所改进方法的平均精度均值mAP@0.5、mAP@0.5:0.95分别提升4.31、3.66个百分点,检测速度和模型大小分别为46.77帧/s和15.56 M,与SSD、YOLOv5、Fast R—CNN和YOLOv7相比也有一定的优势。改进模型能有效实现玉米植株的检测,实时性好,内存占用量小,可为智能除草机器人的护苗工作提供借鉴。 展开更多
关键词 玉米植株检测 YOLOv5模型 加权双向特征金字塔 坐标注意力机制
在线阅读 下载PDF
改进YOLOv8n的轻量级遥感图像军用飞机检测算法 被引量:6
14
作者 杨瑞君 张浩 叶璟 《电子测量技术》 北大核心 2025年第1期154-165,共12页
针对现有的轻量级目标检测算法在应用于遥感图像军用飞机目标检测任务所面临的模型参数大、检测速度慢的情况,提出一种基于YOLOv8n的轻量级遥感图像军用飞机目标检测算法:LeYOLO-MARs。采用了优化后的倒置瓶颈模块替换原始主干网络中的... 针对现有的轻量级目标检测算法在应用于遥感图像军用飞机目标检测任务所面临的模型参数大、检测速度慢的情况,提出一种基于YOLOv8n的轻量级遥感图像军用飞机目标检测算法:LeYOLO-MARs。采用了优化后的倒置瓶颈模块替换原始主干网络中的经典瓶颈模块,更换高效的骨干网络特征提取模式,在保持特征提取能力的同时,有效降低了计算需求并提升了计算速度;颈部网络中引入了快速金字塔架构网络,减少了卷积层数并提高了语义信息共享的效率,减少了锁定和等待时间,同时考虑了有限的并行化机会和架构的复杂性;使用轻量级解耦网络头,通过逐点卷积简化检测头结构;使用Inner-SIoU作为新的定位回归损失函数,提升对小目标样本的学习能力并加快回归边界框的收敛;加入了轻量级金字塔压缩注意力机制模块,有效整合局部注意力和全局注意力,以建立long-range通道依赖关系。实验结果表明,改进的算法在保证检测速度的同时取得了95.7%的检测精度,比基线模型高0.4%,模型参数缩小43%,计算量减少63%,较主流算法在检测效果上有一定的提升,能够对军用飞机目标进行高质量实时检测。 展开更多
关键词 目标检测 军用飞机 YOLOv8 倒置瓶颈 注意力模块 特征金字塔
原文传递
基于改进EfficientDet的食品生产线核桃仁分选智能化研究
15
作者 秦新华 王义亮 +1 位作者 李玉贵 李晋 《食品与机械》 北大核心 2025年第8期77-84,共8页
[目的]提高现有食品生产线核桃仁分选的效率和精度。[方法]基于核桃仁分拣的智能化生产线,提出一种改进的EfficientDet模型用于食品生产线核桃仁智能化分选。通过在主干网络引入卷积注意力机制模块,强化模型对食品区域的聚焦能力。通过... [目的]提高现有食品生产线核桃仁分选的效率和精度。[方法]基于核桃仁分拣的智能化生产线,提出一种改进的EfficientDet模型用于食品生产线核桃仁智能化分选。通过在主干网络引入卷积注意力机制模块,强化模型对食品区域的聚焦能力。通过改进双向特征金字塔网络,增强模型对不同尺度食品的检测能力。通过Dynamic ReLU激活函数对原激活函数进行优化,增强模型对食品的检测性能,并将优化后的模型部署于食品生产线进行试验验证。[结果]试验方法在核桃仁分选任务中实现对正常、碎壳、黑斑和干瘪核桃仁的精准识别与高效分类,单张图像检测时间为18 ms,平均精度均值达到97.92%,误检率降至1.0%,可有效提高食品生产线自动化水平。[结论]该智能化分选方法有效解决了传统分选效率低和精度差的问题,在食品生产线自动化领域具有良好的应用前景与推广价值。 展开更多
关键词 食品生产线 核桃仁分选 智能化 EfficientDet模型 双向特征金字塔网络 卷积注意力机制模块
在线阅读 下载PDF
基于混合注意力机制的调制识别算法
16
作者 李佳宜 刘芸江 +1 位作者 李泊含 刘浩 《电光与控制》 北大核心 2025年第9期41-46,60,共7页
针对目前基于卷积神经网络(CNN)进行调制识别的方法,在卷积层不断加深的过程中浅层空间信息丢失、训练耗时长等问题,提出一种基于混合注意力机制的调制识别算法。首先,通过构建多尺度金字塔池化(MSPP)对输入进行并行处理,提取信号的深... 针对目前基于卷积神经网络(CNN)进行调制识别的方法,在卷积层不断加深的过程中浅层空间信息丢失、训练耗时长等问题,提出一种基于混合注意力机制的调制识别算法。首先,通过构建多尺度金字塔池化(MSPP)对输入进行并行处理,提取信号的深度特征和多尺度特征;然后,引入改进卷积的混合级联注意力机制,包括缩放点积注意力(SDPA)和挤压-激发块(SEB)从空间和通道维度关注有利于调制识别的关键特征,使模型具有适应性更强的特征表达能力,同时有效缩短了模型的训练时间。实验结果表明,所提算法在信噪比为-20 dB、0 dB、20 dB时的识别准确率分别达到52.16%、61.87%、91.69%,均高于其他算法;相比于多尺度金字塔池化算法,训练时间缩短了50.84%。证明了所提算法能有效地提取信号特征,具有更好的识别准确率。 展开更多
关键词 信号调制 调制识别 多尺度金字塔池化 混合注意力机制 卷积神经网络
在线阅读 下载PDF
视听融合耦合坐标自注意的单目深度估计
17
作者 马存良 蒲江川 +2 位作者 许春冬 易见兵 嘉明珍 《计算机辅助设计与图形学学报》 北大核心 2025年第2期265-276,共12页
针对单目图片和声音回波信号都含空间信息这一特点,提出一种视听融合的单目深度估计方法.首先,通过池化金字塔模块融合分析回波与材料特征来自适应估计单目图片的离散深度值;然后,采用卷积神经网络和Transformer相结合的方法对单目图片... 针对单目图片和声音回波信号都含空间信息这一特点,提出一种视听融合的单目深度估计方法.首先,通过池化金字塔模块融合分析回波与材料特征来自适应估计单目图片的离散深度值;然后,采用卷积神经网络和Transformer相结合的方法对单目图片进行编码,改进坐标注意力提出坐标自注意力模块对图片特征解码获得离散深度值的概率分布;最后,将像素点的深度值建模为离散深度值的期望来构建最终深度图.实验结果表明,在仿真数据集Replica和Matterport3D数据集上,所提方法的均方根误差分别为0.204和0.875,相对误差分别为0.095和0.161,均取得具有竞争力的结果;在真实数据和含噪声数据中,该方法能够应用于真实场景的深度估计. 展开更多
关键词 单目深度估计 视听融合 池化金字塔模块 自注意力
在线阅读 下载PDF
管道环焊缝超声相控阵检测图谱智能识别研究 被引量:1
18
作者 王波 谢建桥 +4 位作者 张辉宇 刘钊 张如韵 杨新基 董绍华 《焊管》 2025年第5期27-35,共9页
为提升油气管道环焊缝缺陷检测的智能化水平,建设更加高效、安全的石油天然气输送管道网络,提出基于深度学习的超声相控阵图像智能识别方法。通过构建包含多种典型缺陷的管道环焊缝超声相控阵图像数据集、图像增强和降噪处理优化数据质... 为提升油气管道环焊缝缺陷检测的智能化水平,建设更加高效、安全的石油天然气输送管道网络,提出基于深度学习的超声相控阵图像智能识别方法。通过构建包含多种典型缺陷的管道环焊缝超声相控阵图像数据集、图像增强和降噪处理优化数据质量;结合目标检测原理与焊缝缺陷成像特征,改进深度学习模型架构以适配缺陷分类与定位需求。结果表明,所提出的方法在环焊缝超声相控阵图像的缺陷识别任务上分别获得了0.963的识别准确率和0.86的定位精度。有效实现了环焊缝缺陷的自动化智能检测,为自动智能化环焊缝缺陷评价提供了有效的技术支持。 展开更多
关键词 超声相控阵检测 缺陷识别 卷积注意力模块 残差学习 特征金字塔
在线阅读 下载PDF
基于Python和DCNN的仪表智能识别研究 被引量:1
19
作者 谷力 《自动化与仪器仪表》 2025年第1期103-106,111,共5页
针对传统的仪表识别主要依靠人力,导致效率和准确率较低的问题,研究提出了一种基于Python和深度卷积神经网络的仪表智能识别模型。该模型首先基于Python设计和图像二值化对仪表图像进行预处理。然后,采用MobileNet V2作为DCNN的主干特... 针对传统的仪表识别主要依靠人力,导致效率和准确率较低的问题,研究提出了一种基于Python和深度卷积神经网络的仪表智能识别模型。该模型首先基于Python设计和图像二值化对仪表图像进行预处理。然后,采用MobileNet V2作为DCNN的主干特征提取网络,结合深度卷积神经网络和注意机制来对仪表图像进行识别。最后,通过实验验证模型的识别性能。结果表明,所提模型的识别准确率和F1值较高,分别为98.63%和94.32%。在视图变化和光照变化的情况下,研究所提模型的查准率和召回率均高于另外三种模型,在视图变化时分别为0.71和0.75,在光照变化时分别为0.78和0.90。研究能够为工业生产中的仪表自动识别提供一定的技术支持,促进工业生产的自动化和智能化发展。 展开更多
关键词 仪表识别 PYTHON 深度卷积神经网络 卷积块注意力模块 空间金字塔池化
原文传递
基于MobileNet的轻量化云检测模型
20
作者 叶武剑 谢林峰 +2 位作者 刘怡俊 温晓卓 李扬 《自然资源遥感》 北大核心 2025年第3期95-103,共9页
针对现有云检测算法计算量和模型规模庞大、在边缘设备上的部署几乎不可行的问题,提出了一种基于MobileNet网络的轻量化云检测模型。该方法在下采样阶段,使用基于注意力机制的残差模块,通过分组卷积降低模型参数量,并结合通道重排机制... 针对现有云检测算法计算量和模型规模庞大、在边缘设备上的部署几乎不可行的问题,提出了一种基于MobileNet网络的轻量化云检测模型。该方法在下采样阶段,使用基于注意力机制的残差模块,通过分组卷积降低模型参数量,并结合通道重排机制和挤压激励(squeeze-and-excitation,SE)注意力模块来增强通道间的信息交流。通过这种方式,既减少了参数量和计算复杂度,又保持了对重要特征的提取能力。在上采样阶段,使用了RepConv模块和改进的空洞空间金字塔池化模块(atrous spatial pyramid pooling,ASPP),以提高网络的学习能力和捕捉图像细节与空间信息的能力。实验结果证明,该文模型在参数量和模型复杂度降低的情况下,能够实现较高精度的云检测,具备实用性和可行性。 展开更多
关键词 云检测 MobileNet网络 注意力机制 多尺度特征 空洞空间金字塔池化模块
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部