Abstract Six new cell lines were established from embryonic tissues of the diamondback moth, Plutella xylostella (L.). The cell lines showed differential characteristics, including growth in attachment or in suspensio...Abstract Six new cell lines were established from embryonic tissues of the diamondback moth, Plutella xylostella (L.). The cell lines showed differential characteristics, including growth in attachment or in suspension, susceptibility to a baculovirus infection and expression of genes involved in the glucosinolate detoxification pathway in R xylostella larvae. Five of the cell lines grew attached to the culture flask and one cell line grew unattached as a suspension cell line. The cell lines had population doubling times ranging from IS to 23 h. Among five of the P. xylostella cell lines examined for infection of a nucleopolyhe. drovirus from Autographa californica, AcMNPV four cell lines were highly susceptible to AcMNPV infection, but one was only semi-permissive to AcMNPV infection. The production of two recombinant proteins, a β-galactosidase of bacterial origin and a secreted alkaline phosphatase of eukaryotic origin, in the R xylostella cell lines was examined in comparison with that in the cell line Sf9 which is commonly used for recombinant protein production. In the P. xylostella cell lines, expression of three important midgut genes involved in the glucosinolate detoxification pathway, including the glucosinolate sulfatase genes GSS1 and GSS2 and the sulfatase modifying factor gene SUMF1、was detected. The R xylostella cell lines developed in this study could be useful in in vitro research systems for studying insec-virus interactions and complex molecular mechanisms in glucosinolate detoxification and insect-plant interactions.展开更多
基金the National Natural Science Foundation of China (Project nos. 31320103922, 31230061 and 31301677)the National Key Project of Fundamental Scientific Research (“973" Programs, No. 2011CB100404)+1 种基金the Program of Introducing Talents of Discipline to Universities ("Program 111")the Jim shan Scholar Program of Fujian Agricultural and Forestry University.
文摘Abstract Six new cell lines were established from embryonic tissues of the diamondback moth, Plutella xylostella (L.). The cell lines showed differential characteristics, including growth in attachment or in suspension, susceptibility to a baculovirus infection and expression of genes involved in the glucosinolate detoxification pathway in R xylostella larvae. Five of the cell lines grew attached to the culture flask and one cell line grew unattached as a suspension cell line. The cell lines had population doubling times ranging from IS to 23 h. Among five of the P. xylostella cell lines examined for infection of a nucleopolyhe. drovirus from Autographa californica, AcMNPV four cell lines were highly susceptible to AcMNPV infection, but one was only semi-permissive to AcMNPV infection. The production of two recombinant proteins, a β-galactosidase of bacterial origin and a secreted alkaline phosphatase of eukaryotic origin, in the R xylostella cell lines was examined in comparison with that in the cell line Sf9 which is commonly used for recombinant protein production. In the P. xylostella cell lines, expression of three important midgut genes involved in the glucosinolate detoxification pathway, including the glucosinolate sulfatase genes GSS1 and GSS2 and the sulfatase modifying factor gene SUMF1、was detected. The R xylostella cell lines developed in this study could be useful in in vitro research systems for studying insec-virus interactions and complex molecular mechanisms in glucosinolate detoxification and insect-plant interactions.