High purity magnesium is not only an important basic raw material for semiconductor and electronics industries,but also a promising new generation of electrochemical energy storage materials and biomedical materials.I...High purity magnesium is not only an important basic raw material for semiconductor and electronics industries,but also a promising new generation of electrochemical energy storage materials and biomedical materials.Impurities in high-purity magnesium affect material properties,which has become the most critical factor restricting its application.However,accurate analysis of multiple ultra-trace impurity elements in high-purity magnesium is extremely challenging.In this paper,based on the synergistic effect of N_(2)O/H_(2) reaction gas mixture to eliminate spectral interference of inductively coupled plasma tandem mass spectrometry(ICP-MS/MS),a new strategy for the quantification of 45 ultra-trace impurity elements in high-purity magnesium was proposed.The results indicated that the limits of detection(LOD)were in the range of 0.02–18.5 ng L^(−1);the LODs of the challenging non-metallic elements Si and S were 18.5 and 12.2 ng L^(−1),respectively;and the LODs of all the other analytes were less than 10 ng L^(−1).Even under hot plasma conditions,LODs of alkali metal elements were also less than 5 ng L^(−1).The spike recovery of each analyte was 93.6%–107%,and the relative standard deviation(RSD)was 3.2%–6.9%,respectively.At a 95%level of confidence,no significant differences were found between the results obtained under the optimal conditions for the analyte with the developed method and the measurement results of SF-ICP-MS.The developed method indicated low LOD,high sample throughput,and complete interference elimination,demonstrating a new avenue for the rapid determination of ultra-trace elements in high-purity magnesium.展开更多
The process mineralogy of kaolin associated quartz flotation concentrate was studied.The experimental results show that the content of SiO2 in the flotation concentrate is 99.66%,and the main impurity elements in the ...The process mineralogy of kaolin associated quartz flotation concentrate was studied.The experimental results show that the content of SiO2 in the flotation concentrate is 99.66%,and the main impurity elements in the concentrate are Al,Fe,K,and Na.The gangue minerals in the flotation concentrate are mainly mica and feldspar symbiosis with quartz in the form of connexion or mineral inclusion.By taking the flotation concentrate as the raw material,the experimental research on HF concentration,HCl concentration,HNO3 concentration,acid leaching temperature,acid leaching time,and the leaching liquid solid ratio of hot pressing acid leaching conditions was carried out.Finally,the factors affecting the quality of purified products were analyzed.Through the acid leaching experiment,it can be seen that hydrofluoric acid has a greater effect on Al and Fe elements,hydrochloric acid has a greater effect on Fe elements,and nitric acid concentration has a smaller effect on impurity elements(which can also be confirmed from the thermodynamic analysis);the acid leaching temperature,the acid leaching time,and the leaching liquid solid mass ratio are proportional to the acid leaching effect.The Al content decreases from 1304.73 to 214.10μg/g,and the aluminum removal rate is 86.12%.The Fe content decreases from 39.35 to 3.72μg/g,and the iron removal rate is 90.55%.Thermodynamic and kinetic studies show that at 220℃,the chemical reaction between quartz and gangue minerals and the leaching agent can be spontaneous in the direction of positive reaction,and gangue minerals and the leaching agent had priority reaction.The mixed acid leaching process accords with the diffusion control model,Ea is 15.16 kJ/mol,which can provide a theoretical guidance for the purification of quartz.展开更多
The present study has proposed a compact process for the production of high-purity β-Ga_(2)O_(3)powder by simply using gallium metal and water as the raw materials.The process basically consists of two essential step...The present study has proposed a compact process for the production of high-purity β-Ga_(2)O_(3)powder by simply using gallium metal and water as the raw materials.The process basically consists of two essential steps including hydrothermal synthesis of Ga OOH and calcination of Ga OOH for the production of the target product of β-Ga_(2)O_(3).Thermodynamic evaluation and systematic experiments were conducted for process parameter optimization.X-ray diffractometer(XRD),scanning electron microscopy(SEM),thermogravimetryDdifferential scanning calorimetry(TG-DSC)and X-ray photoelectron spectroscopy(XPS)were utilized to clarify the reaction mechanisms of the hydrothermal synthesis and transformation of Ga OOH to β-Ga_(2)O_(3)by calcination.Chemical analysis of the final product of β-Ga_(2)O_(3)obtained under the optimal conditions was carried out with inductively coupled plasma mass spectrometry(ICP-MS),and the results showed that the contents of the representative impurities such as Ni,Cu,In,Mn,Co,Zn and Cr are obviously lower than the requirement of 5N β-Ga_(2)O_(3)standard,exhibiting excellent application prospect of the proposed process to produce high-purity β-Ga_(2)O_(3).展开更多
Preparation of high purity ruthenium nitrosyl nitrate using spent Ru-Zn/ZrO_(2)catalyst was studied,including melting and leaching to obtain potassium ruthenate solution,reduction,dissolving,concentrating and drying t...Preparation of high purity ruthenium nitrosyl nitrate using spent Ru-Zn/ZrO_(2)catalyst was studied,including melting and leaching to obtain potassium ruthenate solution,reduction,dissolving,concentrating and drying to obtain ruthenium trichloride,nitrosation and hydrolysis to obtain ruthenium nitrosyl hydroxide,removing of K^(+)and Cl^(-),and neutralization with nitric acid.The effects of temperature,concentration,time and pH on the yield and purity of intermediates and final product were studied,and the optimum process conditions were obtained.The yield of ruthenium nitrosyl nitrate is 92%,the content of ruthenium in high purity product is 32.16%,and the content of Cl^(-)and K^(+)are much less than 0.005%.The reaction kinetics of ruthenium nitrosyl chloride to ruthenium nitrosyl hydroxide was studied.The reaction orders of Ru(NO)Cl_(3)at 40,55 and 70℃are 0.39,0.37 and 0.39,respectively,while those of KOH are 0.16,0.15 and 0.17,respectively.The activation energy is-2.33 k J/mol.展开更多
Orbital Angular Momentum(OAM)waves are characterized by helical wave fronts and orthogonality between different modes.Therefore,OAM waves have huge potential in improving wireless communications'channel capacity a...Orbital Angular Momentum(OAM)waves are characterized by helical wave fronts and orthogonality between different modes.Therefore,OAM waves have huge potential in improving wireless communications'channel capacity and radar imaging's resolution.Consequently,the generation and application of OAM waves have attracted a lot of attention.And many methods are proposed to generate OAM waves.Although antenna array is the most popular method of generating OAM waves,OAM waves generated by antenna array have redundant modes.However,all advantages of OAM waves are closely related to infinite OAM modes.Thus,to better apply OAM waves to wireless communications and radar,it is very important to reduce unnecessary OAM modes and improve the OAM mode purity.In order to improve the OAM mode purity,two combined antenna arrays composed of X direction antenna and Y direction antenna array are proposed in this paper.The X direction antenna array and the Y direction antenna array are supplied by the excitations with the same amplitude and fixed phase shift.The overall phase shift of the X direction antenna array isπ/2 more or less than that of the Y direction antenna array.The results of formulas and antenna models in CST show that the combined antenna arrays can generate OAM waves with less redundant modes in x component,y component and z component.Besides,the z component carries pure OAM modes.展开更多
Cotton is said to be the backbone of Pakistan's economy.Cotton production is facing many challenges such as climate change,pests and diseases,and competition from food crops(Ali et al.,2019).One of the major issue...Cotton is said to be the backbone of Pakistan's economy.Cotton production is facing many challenges such as climate change,pests and diseases,and competition from food crops(Ali et al.,2019).One of the major issues faced by cotton production is seed purity,as cotton is often cross-pollinated,therefore breeders are hard to maintain seed purity.For example,non-Bt cotton varieties are often contaminated with Bt seeds which is an important limiting factor.Another important consideration in cotton breeding is rapid generation advancement.展开更多
Modifying effect and mechanism of trace rare earth on Fe(Si) rich impurity phases in commercial purity aluminum were studied with the aids of SEM, EDAX, TEM, etc. It is found that Ce rich mixed rare earth (RE) is an...Modifying effect and mechanism of trace rare earth on Fe(Si) rich impurity phases in commercial purity aluminum were studied with the aids of SEM, EDAX, TEM, etc. It is found that Ce rich mixed rare earth (RE) is an effective modifying agent, which makes the coarse Fe rich impurity phases transform into complex compounds of tiny, sphere/short stick form, thus improving mechanical properties of this material; its modifying mechanism is in that RE gathering in front of solid/liquid interface enters into the impurity phases, forming complex (AlFeSiRE) compounds; or is adsorbed in the impurity phases surface, impeding the growth of impurity phases; however, excessive RE will result in the increasing of RE compounds (secondary phases), and plasticity reduction of this material. Therefore, its addition amount should be less than 0 07% (mass fraction).展开更多
The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinemen...The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinement limitation with very high strains. The results show that the fine grain zone in the center of sample expands gradually with the increase of forging passes. When the forging passes reach 6, an X-shape fine grain zone is initially formed. With a further increase of the passes, this X-shape zone tends to spread the whole sample. Limitation in the structural refinement is observed with increasing strains during multi-forging process at the room temperature. The grains size in the center is refined to a certain size (110 μm as forging passes reach 12, and there is no further grain refinement in the center with increasing the forging passes to 24. However, the size of the coarse grains near the surface is continuously decreased with increasing the forging passes to 24.展开更多
A novel type nano TiN/Ti composite grain refiner (TiN/Ti refiner) was prepared by high energy ball milling, and its effect on as-cast and hot-working microstructure of commercial purity aluminum (pure Al) was inve...A novel type nano TiN/Ti composite grain refiner (TiN/Ti refiner) was prepared by high energy ball milling, and its effect on as-cast and hot-working microstructure of commercial purity aluminum (pure Al) was investigated. The results show that TiN/Ti refiner exhibits excellent grain refining performances on pure Al. With an addition of 0.2% TiN/Ti refiner, the average grain size of pure Al decreases to 82 μm, which is smaller than that of pure Ti and Al 5Ti 1B master alloy as refiners. The microstructure of weld joint of pure Al with 0.1% TiN/Ti refiner is fine equiaxed grains and the hardness of weld joint is higher than that of the base metal. For pure Al with 40% cold deformation and recrystallization at 250 °C for 1.0 h, the grains of the sample added 0.1% Ti powder have an obvious grain growth behavior. In contrast, oriented grains caused by deformation have been eliminated, and there is no obvious grain growth in pure Al refined with 0.1% TiN/Ti refiner, indicating that nano TiN in the refiner inhibits the growth of grain during recrystallization.展开更多
Signal to noise ratio (SNR) and resolution are two important but contradictory characteristics used to evaluate the quality of seismic data. For relatively preserving SNR while enhancing resolution, the signal purit...Signal to noise ratio (SNR) and resolution are two important but contradictory characteristics used to evaluate the quality of seismic data. For relatively preserving SNR while enhancing resolution, the signal purity spectrum is introduced, estimated, and used to define the desired output amplitude spectrum after deconvolution. Since a real reflectivity series is blue rather than white, the effects of white reflectivity hypothesis on wavelets are experimentally analyzed and color compensation is applied after spectrum whitening. Experiments on real seismic data indicate that the cascade of the two processing stages can improve the ability of seismic data to delineate the geological details.展开更多
[Objective] This study aimed to screen a set of SSR core primers suitable for purity identification of pepper (Capsicum) hybrids. [Method] DNA fingerprint of 100 pepper hybrids was analyzed using 17 SSR primers. [Re...[Objective] This study aimed to screen a set of SSR core primers suitable for purity identification of pepper (Capsicum) hybrids. [Method] DNA fingerprint of 100 pepper hybrids was analyzed using 17 SSR primers. [Result] According to the polymorphism and heterozygosity, Hpms1-214, Es395 and Hpmsl-5 were determined as three preferred core primers for purity identification of pepper hybrids. By using these three preferred core primers, 97 pepper hybrids (accounting for 97%) had heterozygous band pattern with at least one primer. Es330, Es363, Epms923, Es120 and Es64 were determined as candidate core primers for purity identification of pepper hybrids. Specific primers of 14 varieties were obtained, which could be used to further screen parent-complementary primers of each pepper hybrid. [Con- clusion] This study laid the foundation for constructing standard DNA fingerprints for purity identification of pepper hybrids.展开更多
Objective] This study was conducted to verify the feasibiIity of ISSR marker for identifying genetic purity of bitter gourd hybrid, and thus to provide an effective method for seed purity test in production practices....Objective] This study was conducted to verify the feasibiIity of ISSR marker for identifying genetic purity of bitter gourd hybrid, and thus to provide an effective method for seed purity test in production practices. [Method] The DNA fin-gerprints of a bitter gourd cuItivar Xiuyu 1 and its parents were analyzed using IS-SR marker with 91 primers. [Result] Two primers ISSR-845 and ISSR-891 which ampIified two DNA bands of 510 and 300 bp respectiveIy from F1 generation and its parents were screened out from 91 primers. ISSR-845 couId distinguish the male parent from F1 hybrid and the female parent, whiIe ISSR-891 couId distinguish the female parent inbred Iine from Xiuyu 1. Seed purity test with the specific markers gave the same resuIt with fiIed trials based on morphoIogical identification. [Conclu-sion] ISSR marker is an accurate, simpIe and effective method for seed purity test bitter gourd hybrid, and thus can be used in production practices.展开更多
[Objective] The aim was to establish more specific, sensitive, accurate and practical method to detect purity of Thai Hom Mali rice. [Method] RAPD method cooperated with two primers of KDML105 and RD15 was established...[Objective] The aim was to establish more specific, sensitive, accurate and practical method to detect purity of Thai Hom Mali rice. [Method] RAPD method cooperated with two primers of KDML105 and RD15 was established by feeling for the extraction methods of DNA, optimizing concentrations of the factors influencing the results of RAPD such as template DNA, Mg2+, random primer, dNTPs and Taq polymerase, and screening the random primers. [Result] The optimum RAPD reaction system was 25.0 μl in total volume, containing 4.0-32.0 ng/μl of template DNA, 200.0 μg/L random primer, 2.0 mmol/L Mg2+, 200.0 μmol/L dNTPs and 1.0 U of Taq enzyme. Then, the Thai Hom Mali rice and non-Thai Hom Mali rice can be distinguished according to the presence or absence of two DNA markers. [Conclusion] The RAPD technology can effectively cover the shortages of identifications by sense and boiling in water; in addition, it is simple, sensitive and low-cost, suitable to be used in routine tests.展开更多
An integer-N frequency synthesizer in 0.35μm SiGe BiCMOS is presented. By implementing different building blocks with different types of devices,a high purity frequency synthesizer with excellent spur and phase noise...An integer-N frequency synthesizer in 0.35μm SiGe BiCMOS is presented. By implementing different building blocks with different types of devices,a high purity frequency synthesizer with excellent spur and phase noise performance has been realized. All the building blocks are implemented with differential topology except for the off-chip loop filter. To further reduce the phase noise,bonding wires are used to form the resonator in the LC-VCO. The frequency synthesizer operates from 2.39 to 2.72GHz with output power of about 0dBm. The measured closed-loop phase noise is - 95dBc/Hz at 100kHz offset and - 116dBc/Hz at 1MHz offset from the carrier. The power level of the reference spur is less than - 72dBc. With a 3V power supply, the whole chip including the output buffers consumes 60mA.展开更多
[Objective] SSR molecular marker technique was used to determine the purity of sunflower seed with the aim to provide accurate, convenient method for the identification of the purity of hybrid seeds in production and ...[Objective] SSR molecular marker technique was used to determine the purity of sunflower seed with the aim to provide accurate, convenient method for the identification of the purity of hybrid seeds in production and processing. [Method] With the DNA of Xinshikui 6 and its parents as template, about 100 pairs of SSR molecular markers were screened after DNA extraction, PCR amplification and electrophoresis production. [Results] SSR polymorphic primer marker 532 produced a specific band of 469 bp in the female parent, and a specific band of 451 bp in the male parent; primer marker 574 produced a specific band of 364 bp in the female parent, and a specific band of 384 bp in the male parent. The indoor molecular purity identification and field purity identification were consistent with each other. The primer marker 532 and 574 could be obtained from the SSR molecular marker method to distinguish the male parent, female parent and hybrid of Xinshikui 6, and both of the 2 primer markers can effectively identify the purities of the hybrid seeds of Xinshikui 6, as well as the authenticity of the seeds. [Conclusion] The proposed method was simple, fast, accurate to operate with the advantages of high reproducibility, and it had become the major method in the identification of sunflower varieties.展开更多
A method was developed for the simultaneous determination of seven trace impurities (Cd, Mn, Pb, Zn, Cu, Fe and Ni) in high purity cobalt oxide by ICP AES. The matrix effect was eliminated by preci pitation with 1 nit...A method was developed for the simultaneous determination of seven trace impurities (Cd, Mn, Pb, Zn, Cu, Fe and Ni) in high purity cobalt oxide by ICP AES. The matrix effect was eliminated by preci pitation with 1 nitroso 2 naphthol. The matrix effect of cobalt on the absorptions of trace impurities, the effects of reaction time, pH value, dosage of precipitant on the formation of cobalt 1 nitroso 2 naphthol complex, the effects of hydrochloric acid on the stability of this complex and masking of elements were studied. Recoveries of the impurities in spiked sample are from 90% to 110% with a precision of 1.1% 5.0% RSD. The detection limits of the seven elements are in the range of 0.01 0.24μg/g. The method can be applied to the analysis of high purity cobalt metal, cobalt oxide and other cobalt compounds.展开更多
Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures.The grain boundary effect a...Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures.The grain boundary effect and indentation size effect were explored.The indentation hardness was fitted using the Nix-Gao model by considering the scaling factor.The results show that the scaling factor is barely correlated with the grain/sub-grain size.The interaction between the plastically deformed zone(PDZ) boundary and the grain/sub-grain boundary is believed to be the reason that leads to an increase of the measured hardness at the specific depths.Results also indicate that the area of the PDZ is barely correlated with the grain/sub-grain size,and the indentation hardness starts to stabilize once the PDZ expands to the dimension of an individual grain/sub-grain.展开更多
High purity silicon carbide (SIC) powder was synthesized in-situ by chemical reaction between silicon and carbon powder. In order to ensure that the impurity concentration of the resulting SiC powder is suitable for...High purity silicon carbide (SIC) powder was synthesized in-situ by chemical reaction between silicon and carbon powder. In order to ensure that the impurity concentration of the resulting SiC powder is suitable for high-resistivity SiC single crystal growth, the preparation technology of SiC powder is different from that of SiC ceramic. The influence of the shape and size of carbon particles on the morphology and phase composition of the obtained SiC powder were discussed. The phase composition and morphology of the products were investigated by X-ray diffraction, Raman microspectroscopy and scanning electron microscopy. The results show that the composition of resulting SiC by in-situ synthesis from Si/C mixture strongly depends on the nature of the carbon source, which corresponds to the particle size and shape, as well as the preparation temperature. In the experimental conditions, flake graphite is more suitable for the synthesis of SiC powder than activated carbon because of its relatively smaller particle size and flake shape, which make the conversion more complete. The major phase composition of the full conversion products is β-SiC, with traces of α-SiC. Glow discharge mass spectroscopy measurements indicated that SiC powder synthesized with this chemical reaction method can meet the purity demand for the growth of high-resistivity SiC single crystals.展开更多
基金supported by the Natural Science Foundation of China(52171103 and 21975289).
文摘High purity magnesium is not only an important basic raw material for semiconductor and electronics industries,but also a promising new generation of electrochemical energy storage materials and biomedical materials.Impurities in high-purity magnesium affect material properties,which has become the most critical factor restricting its application.However,accurate analysis of multiple ultra-trace impurity elements in high-purity magnesium is extremely challenging.In this paper,based on the synergistic effect of N_(2)O/H_(2) reaction gas mixture to eliminate spectral interference of inductively coupled plasma tandem mass spectrometry(ICP-MS/MS),a new strategy for the quantification of 45 ultra-trace impurity elements in high-purity magnesium was proposed.The results indicated that the limits of detection(LOD)were in the range of 0.02–18.5 ng L^(−1);the LODs of the challenging non-metallic elements Si and S were 18.5 and 12.2 ng L^(−1),respectively;and the LODs of all the other analytes were less than 10 ng L^(−1).Even under hot plasma conditions,LODs of alkali metal elements were also less than 5 ng L^(−1).The spike recovery of each analyte was 93.6%–107%,and the relative standard deviation(RSD)was 3.2%–6.9%,respectively.At a 95%level of confidence,no significant differences were found between the results obtained under the optimal conditions for the analyte with the developed method and the measurement results of SF-ICP-MS.The developed method indicated low LOD,high sample throughput,and complete interference elimination,demonstrating a new avenue for the rapid determination of ultra-trace elements in high-purity magnesium.
文摘The process mineralogy of kaolin associated quartz flotation concentrate was studied.The experimental results show that the content of SiO2 in the flotation concentrate is 99.66%,and the main impurity elements in the concentrate are Al,Fe,K,and Na.The gangue minerals in the flotation concentrate are mainly mica and feldspar symbiosis with quartz in the form of connexion or mineral inclusion.By taking the flotation concentrate as the raw material,the experimental research on HF concentration,HCl concentration,HNO3 concentration,acid leaching temperature,acid leaching time,and the leaching liquid solid ratio of hot pressing acid leaching conditions was carried out.Finally,the factors affecting the quality of purified products were analyzed.Through the acid leaching experiment,it can be seen that hydrofluoric acid has a greater effect on Al and Fe elements,hydrochloric acid has a greater effect on Fe elements,and nitric acid concentration has a smaller effect on impurity elements(which can also be confirmed from the thermodynamic analysis);the acid leaching temperature,the acid leaching time,and the leaching liquid solid mass ratio are proportional to the acid leaching effect.The Al content decreases from 1304.73 to 214.10μg/g,and the aluminum removal rate is 86.12%.The Fe content decreases from 39.35 to 3.72μg/g,and the iron removal rate is 90.55%.Thermodynamic and kinetic studies show that at 220℃,the chemical reaction between quartz and gangue minerals and the leaching agent can be spontaneous in the direction of positive reaction,and gangue minerals and the leaching agent had priority reaction.The mixed acid leaching process accords with the diffusion control model,Ea is 15.16 kJ/mol,which can provide a theoretical guidance for the purification of quartz.
基金supported by the National Natural Science Foundation of China(No.51904003)the Key Research and Development Plan of Anhui Province(No.2022n07020004)+1 种基金the Natural Science Foundation of Anhui Province(Nos.2308085ME156 and 2108085J26)Anhui Provincial Department of Education(No.2022AH050332)。
文摘The present study has proposed a compact process for the production of high-purity β-Ga_(2)O_(3)powder by simply using gallium metal and water as the raw materials.The process basically consists of two essential steps including hydrothermal synthesis of Ga OOH and calcination of Ga OOH for the production of the target product of β-Ga_(2)O_(3).Thermodynamic evaluation and systematic experiments were conducted for process parameter optimization.X-ray diffractometer(XRD),scanning electron microscopy(SEM),thermogravimetryDdifferential scanning calorimetry(TG-DSC)and X-ray photoelectron spectroscopy(XPS)were utilized to clarify the reaction mechanisms of the hydrothermal synthesis and transformation of Ga OOH to β-Ga_(2)O_(3)by calcination.Chemical analysis of the final product of β-Ga_(2)O_(3)obtained under the optimal conditions was carried out with inductively coupled plasma mass spectrometry(ICP-MS),and the results showed that the contents of the representative impurities such as Ni,Cu,In,Mn,Co,Zn and Cr are obviously lower than the requirement of 5N β-Ga_(2)O_(3)standard,exhibiting excellent application prospect of the proposed process to produce high-purity β-Ga_(2)O_(3).
基金Project(22178392)supported by the National Natural Science Foundation of China。
文摘Preparation of high purity ruthenium nitrosyl nitrate using spent Ru-Zn/ZrO_(2)catalyst was studied,including melting and leaching to obtain potassium ruthenate solution,reduction,dissolving,concentrating and drying to obtain ruthenium trichloride,nitrosation and hydrolysis to obtain ruthenium nitrosyl hydroxide,removing of K^(+)and Cl^(-),and neutralization with nitric acid.The effects of temperature,concentration,time and pH on the yield and purity of intermediates and final product were studied,and the optimum process conditions were obtained.The yield of ruthenium nitrosyl nitrate is 92%,the content of ruthenium in high purity product is 32.16%,and the content of Cl^(-)and K^(+)are much less than 0.005%.The reaction kinetics of ruthenium nitrosyl chloride to ruthenium nitrosyl hydroxide was studied.The reaction orders of Ru(NO)Cl_(3)at 40,55 and 70℃are 0.39,0.37 and 0.39,respectively,while those of KOH are 0.16,0.15 and 0.17,respectively.The activation energy is-2.33 k J/mol.
基金supported by the National Science Foundation of China(NSFC 62073334).
文摘Orbital Angular Momentum(OAM)waves are characterized by helical wave fronts and orthogonality between different modes.Therefore,OAM waves have huge potential in improving wireless communications'channel capacity and radar imaging's resolution.Consequently,the generation and application of OAM waves have attracted a lot of attention.And many methods are proposed to generate OAM waves.Although antenna array is the most popular method of generating OAM waves,OAM waves generated by antenna array have redundant modes.However,all advantages of OAM waves are closely related to infinite OAM modes.Thus,to better apply OAM waves to wireless communications and radar,it is very important to reduce unnecessary OAM modes and improve the OAM mode purity.In order to improve the OAM mode purity,two combined antenna arrays composed of X direction antenna and Y direction antenna array are proposed in this paper.The X direction antenna array and the Y direction antenna array are supplied by the excitations with the same amplitude and fixed phase shift.The overall phase shift of the X direction antenna array isπ/2 more or less than that of the Y direction antenna array.The results of formulas and antenna models in CST show that the combined antenna arrays can generate OAM waves with less redundant modes in x component,y component and z component.Besides,the z component carries pure OAM modes.
基金the Research Project at International Center for Chemical and Biological Sciences,University of Karachi,Karachi,Pakistan。
文摘Cotton is said to be the backbone of Pakistan's economy.Cotton production is facing many challenges such as climate change,pests and diseases,and competition from food crops(Ali et al.,2019).One of the major issues faced by cotton production is seed purity,as cotton is often cross-pollinated,therefore breeders are hard to maintain seed purity.For example,non-Bt cotton varieties are often contaminated with Bt seeds which is an important limiting factor.Another important consideration in cotton breeding is rapid generation advancement.
文摘Modifying effect and mechanism of trace rare earth on Fe(Si) rich impurity phases in commercial purity aluminum were studied with the aids of SEM, EDAX, TEM, etc. It is found that Ce rich mixed rare earth (RE) is an effective modifying agent, which makes the coarse Fe rich impurity phases transform into complex compounds of tiny, sphere/short stick form, thus improving mechanical properties of this material; its modifying mechanism is in that RE gathering in front of solid/liquid interface enters into the impurity phases, forming complex (AlFeSiRE) compounds; or is adsorbed in the impurity phases surface, impeding the growth of impurity phases; however, excessive RE will result in the increasing of RE compounds (secondary phases), and plasticity reduction of this material. Therefore, its addition amount should be less than 0 07% (mass fraction).
基金Projects(51204053,51074048,51204048)supported by the National Natural Science Foundation of ChinaProject(20110491518)supported by China Postdoctoral Science FoundationProject(2012CB619506)supported by the National Basic Research Program of China
文摘The effect of forging passes on the refinement of high purity aluminum during multi-forging was investigated. The attention was focused on the structure uniformity due to deformation uniformity and the grain refinement limitation with very high strains. The results show that the fine grain zone in the center of sample expands gradually with the increase of forging passes. When the forging passes reach 6, an X-shape fine grain zone is initially formed. With a further increase of the passes, this X-shape zone tends to spread the whole sample. Limitation in the structural refinement is observed with increasing strains during multi-forging process at the room temperature. The grains size in the center is refined to a certain size (110 μm as forging passes reach 12, and there is no further grain refinement in the center with increasing the forging passes to 24. However, the size of the coarse grains near the surface is continuously decreased with increasing the forging passes to 24.
文摘A novel type nano TiN/Ti composite grain refiner (TiN/Ti refiner) was prepared by high energy ball milling, and its effect on as-cast and hot-working microstructure of commercial purity aluminum (pure Al) was investigated. The results show that TiN/Ti refiner exhibits excellent grain refining performances on pure Al. With an addition of 0.2% TiN/Ti refiner, the average grain size of pure Al decreases to 82 μm, which is smaller than that of pure Ti and Al 5Ti 1B master alloy as refiners. The microstructure of weld joint of pure Al with 0.1% TiN/Ti refiner is fine equiaxed grains and the hardness of weld joint is higher than that of the base metal. For pure Al with 40% cold deformation and recrystallization at 250 °C for 1.0 h, the grains of the sample added 0.1% Ti powder have an obvious grain growth behavior. In contrast, oriented grains caused by deformation have been eliminated, and there is no obvious grain growth in pure Al refined with 0.1% TiN/Ti refiner, indicating that nano TiN in the refiner inhibits the growth of grain during recrystallization.
基金supported by the National Natural Science Foundation of China(Grant No.41174117)PetroChina Innovation Foundation(Grant No.2010D-5006-0301)
文摘Signal to noise ratio (SNR) and resolution are two important but contradictory characteristics used to evaluate the quality of seismic data. For relatively preserving SNR while enhancing resolution, the signal purity spectrum is introduced, estimated, and used to define the desired output amplitude spectrum after deconvolution. Since a real reflectivity series is blue rather than white, the effects of white reflectivity hypothesis on wavelets are experimentally analyzed and color compensation is applied after spectrum whitening. Experiments on real seismic data indicate that the cascade of the two processing stages can improve the ability of seismic data to delineate the geological details.
基金Supported by Excellent Team Training Program of Yunnan Academy of Agriculture Sciences(YAAS2014YY002)~~
文摘[Objective] This study aimed to screen a set of SSR core primers suitable for purity identification of pepper (Capsicum) hybrids. [Method] DNA fingerprint of 100 pepper hybrids was analyzed using 17 SSR primers. [Result] According to the polymorphism and heterozygosity, Hpms1-214, Es395 and Hpmsl-5 were determined as three preferred core primers for purity identification of pepper hybrids. By using these three preferred core primers, 97 pepper hybrids (accounting for 97%) had heterozygous band pattern with at least one primer. Es330, Es363, Epms923, Es120 and Es64 were determined as candidate core primers for purity identification of pepper hybrids. Specific primers of 14 varieties were obtained, which could be used to further screen parent-complementary primers of each pepper hybrid. [Con- clusion] This study laid the foundation for constructing standard DNA fingerprints for purity identification of pepper hybrids.
基金Supported by Key Technology Research and Development Program for Agriculture of Jianngsu Province(BE2012323)~~
文摘Objective] This study was conducted to verify the feasibiIity of ISSR marker for identifying genetic purity of bitter gourd hybrid, and thus to provide an effective method for seed purity test in production practices. [Method] The DNA fin-gerprints of a bitter gourd cuItivar Xiuyu 1 and its parents were analyzed using IS-SR marker with 91 primers. [Result] Two primers ISSR-845 and ISSR-891 which ampIified two DNA bands of 510 and 300 bp respectiveIy from F1 generation and its parents were screened out from 91 primers. ISSR-845 couId distinguish the male parent from F1 hybrid and the female parent, whiIe ISSR-891 couId distinguish the female parent inbred Iine from Xiuyu 1. Seed purity test with the specific markers gave the same resuIt with fiIed trials based on morphoIogical identification. [Conclu-sion] ISSR marker is an accurate, simpIe and effective method for seed purity test bitter gourd hybrid, and thus can be used in production practices.
文摘[Objective] The aim was to establish more specific, sensitive, accurate and practical method to detect purity of Thai Hom Mali rice. [Method] RAPD method cooperated with two primers of KDML105 and RD15 was established by feeling for the extraction methods of DNA, optimizing concentrations of the factors influencing the results of RAPD such as template DNA, Mg2+, random primer, dNTPs and Taq polymerase, and screening the random primers. [Result] The optimum RAPD reaction system was 25.0 μl in total volume, containing 4.0-32.0 ng/μl of template DNA, 200.0 μg/L random primer, 2.0 mmol/L Mg2+, 200.0 μmol/L dNTPs and 1.0 U of Taq enzyme. Then, the Thai Hom Mali rice and non-Thai Hom Mali rice can be distinguished according to the presence or absence of two DNA markers. [Conclusion] The RAPD technology can effectively cover the shortages of identifications by sense and boiling in water; in addition, it is simple, sensitive and low-cost, suitable to be used in routine tests.
文摘An integer-N frequency synthesizer in 0.35μm SiGe BiCMOS is presented. By implementing different building blocks with different types of devices,a high purity frequency synthesizer with excellent spur and phase noise performance has been realized. All the building blocks are implemented with differential topology except for the off-chip loop filter. To further reduce the phase noise,bonding wires are used to form the resonator in the LC-VCO. The frequency synthesizer operates from 2.39 to 2.72GHz with output power of about 0dBm. The measured closed-loop phase noise is - 95dBc/Hz at 100kHz offset and - 116dBc/Hz at 1MHz offset from the carrier. The power level of the reference spur is less than - 72dBc. With a 3V power supply, the whole chip including the output buffers consumes 60mA.
基金Supported by the Key Science and Technology Project of Xinjiang Production and Construction Corps(2016AC024)the Key Science and Technology Project for Seed Breeding during the Thirteenth Five Year Plan of Xinjiang Production and Construction Corps(2014BA005)+1 种基金the China Agriculture Research System for Sunflower of China(CARS-16)the Science and Technology Project for Supporting Xinjiang of China(2014AB007)~~
文摘[Objective] SSR molecular marker technique was used to determine the purity of sunflower seed with the aim to provide accurate, convenient method for the identification of the purity of hybrid seeds in production and processing. [Method] With the DNA of Xinshikui 6 and its parents as template, about 100 pairs of SSR molecular markers were screened after DNA extraction, PCR amplification and electrophoresis production. [Results] SSR polymorphic primer marker 532 produced a specific band of 469 bp in the female parent, and a specific band of 451 bp in the male parent; primer marker 574 produced a specific band of 364 bp in the female parent, and a specific band of 384 bp in the male parent. The indoor molecular purity identification and field purity identification were consistent with each other. The primer marker 532 and 574 could be obtained from the SSR molecular marker method to distinguish the male parent, female parent and hybrid of Xinshikui 6, and both of the 2 primer markers can effectively identify the purities of the hybrid seeds of Xinshikui 6, as well as the authenticity of the seeds. [Conclusion] The proposed method was simple, fast, accurate to operate with the advantages of high reproducibility, and it had become the major method in the identification of sunflower varieties.
文摘A method was developed for the simultaneous determination of seven trace impurities (Cd, Mn, Pb, Zn, Cu, Fe and Ni) in high purity cobalt oxide by ICP AES. The matrix effect was eliminated by preci pitation with 1 nitroso 2 naphthol. The matrix effect of cobalt on the absorptions of trace impurities, the effects of reaction time, pH value, dosage of precipitant on the formation of cobalt 1 nitroso 2 naphthol complex, the effects of hydrochloric acid on the stability of this complex and masking of elements were studied. Recoveries of the impurities in spiked sample are from 90% to 110% with a precision of 1.1% 5.0% RSD. The detection limits of the seven elements are in the range of 0.01 0.24μg/g. The method can be applied to the analysis of high purity cobalt metal, cobalt oxide and other cobalt compounds.
基金Project(51174235)supported by the National Natural Science Foundation of China
文摘Hardness of materials depends significantly on the indentation size and grain/sub-grain size via microindentation and nanoindentation tests of high-purity tungsten with different structures.The grain boundary effect and indentation size effect were explored.The indentation hardness was fitted using the Nix-Gao model by considering the scaling factor.The results show that the scaling factor is barely correlated with the grain/sub-grain size.The interaction between the plastically deformed zone(PDZ) boundary and the grain/sub-grain boundary is believed to be the reason that leads to an increase of the measured hardness at the specific depths.Results also indicate that the area of the PDZ is barely correlated with the grain/sub-grain size,and the indentation hardness starts to stabilize once the PDZ expands to the dimension of an individual grain/sub-grain.
文摘High purity silicon carbide (SIC) powder was synthesized in-situ by chemical reaction between silicon and carbon powder. In order to ensure that the impurity concentration of the resulting SiC powder is suitable for high-resistivity SiC single crystal growth, the preparation technology of SiC powder is different from that of SiC ceramic. The influence of the shape and size of carbon particles on the morphology and phase composition of the obtained SiC powder were discussed. The phase composition and morphology of the products were investigated by X-ray diffraction, Raman microspectroscopy and scanning electron microscopy. The results show that the composition of resulting SiC by in-situ synthesis from Si/C mixture strongly depends on the nature of the carbon source, which corresponds to the particle size and shape, as well as the preparation temperature. In the experimental conditions, flake graphite is more suitable for the synthesis of SiC powder than activated carbon because of its relatively smaller particle size and flake shape, which make the conversion more complete. The major phase composition of the full conversion products is β-SiC, with traces of α-SiC. Glow discharge mass spectroscopy measurements indicated that SiC powder synthesized with this chemical reaction method can meet the purity demand for the growth of high-resistivity SiC single crystals.