Ordinary energy and dark energy density are determined using a Cosserat-Cartan and killing-Yano reinterpretation of Einstein’s special and general relativity. Thus starting from a maximally symmetric space with 528 k...Ordinary energy and dark energy density are determined using a Cosserat-Cartan and killing-Yano reinterpretation of Einstein’s special and general relativity. Thus starting from a maximally symmetric space with 528 killing vector fields corresponding to Witten’s five Branes model in eleven dimensional M-theory we reason that 504 of the 528 are essentially the components of the relevant killing-Yano tensor. In turn this tensor is related to hidden symmetries and torsional coupled stresses of the Cosserat micro-polar space as well as the Einstein-Cartan connection. Proceeding in this way the dark energy density is found to be that of Einstein’s maximal energy mc2 where m is the mass and c is the speed of light multiplied with a Lorentz factor equal to the ratio of the 504 killing-Yano tensor and the 528 states maximally symmetric space. Thus we have E (dark) = mc2 (504/528) = mc2 (21/22) which is about 95.5% of the total maximal energy density in astounding agreement with COBE, WMAP and Planck cosmological measurements as well as the type 1a supernova analysis. Finally theory and results are validated via a related theory based on the degrees of freedom of pure gravity, the theory of nonlocal elasticity as well as ‘t Hooft-Veltman renormalization method.展开更多
A classical question of Yoneda asks when the tensor product of two injective modules is injective. A complete answer to this question was given by Enochs and Jenda in 1991. In this paper the analogue question for pure...A classical question of Yoneda asks when the tensor product of two injective modules is injective. A complete answer to this question was given by Enochs and Jenda in 1991. In this paper the analogue question for pure-injective modules is studied.展开更多
We prove an Artin-Schelter regularity result for the method of twisted tensor products under a certain form. Such twisted tensor products, whose twisting maps are determined by the action on the generators, include Or...We prove an Artin-Schelter regularity result for the method of twisted tensor products under a certain form. Such twisted tensor products, whose twisting maps are determined by the action on the generators, include Ore extensions and double Ore extensions. It is helpful to construct high- dimensional Artin-Schelter regular algebras.展开更多
The authors consider a differentiable manifold with H-structure which is an isomorphic representation of an associative, commutative and unitial algebra. For Riemannian metric tensor fields, the φ-operators associate...The authors consider a differentiable manifold with H-structure which is an isomorphic representation of an associative, commutative and unitial algebra. For Riemannian metric tensor fields, the φ-operators associated with r-regular H-structure are introduced. With the help of φ-operators, the hyperholomorphity condition of B-manifolds is established.展开更多
Let(M,ω)be a symplectic manifold.In this paper,the authors consider the notions of musical(bemolle and diesis)isomorphisms ω~b:T M→T~*M and ω~?:T~*M→TM between tangent and cotangent bundles.The authors prove that...Let(M,ω)be a symplectic manifold.In this paper,the authors consider the notions of musical(bemolle and diesis)isomorphisms ω~b:T M→T~*M and ω~?:T~*M→TM between tangent and cotangent bundles.The authors prove that the complete lifts of symplectic vector field to tangent and cotangent bundles is ω~b-related.As consequence of analyze of connections between the complete lift ~cω_(T M )of symplectic 2-form ω to tangent bundle and the natural symplectic 2-form dp on cotangent bundle,the authors proved that dp is a pullback o f^cω_(TM)by ω~?.Also,the authors investigate the complete lift ~cφ_T~*_M )of almost complex structure φ to cotangent bundle and prove that it is a transform by ω~?of complete lift^cφ_(T M )to tangent bundle if the triple(M,ω,φ)is an almost holomorphic A-manifold.The transform of complete lifts of vector-valued 2-form is also studied.展开更多
文摘Ordinary energy and dark energy density are determined using a Cosserat-Cartan and killing-Yano reinterpretation of Einstein’s special and general relativity. Thus starting from a maximally symmetric space with 528 killing vector fields corresponding to Witten’s five Branes model in eleven dimensional M-theory we reason that 504 of the 528 are essentially the components of the relevant killing-Yano tensor. In turn this tensor is related to hidden symmetries and torsional coupled stresses of the Cosserat micro-polar space as well as the Einstein-Cartan connection. Proceeding in this way the dark energy density is found to be that of Einstein’s maximal energy mc2 where m is the mass and c is the speed of light multiplied with a Lorentz factor equal to the ratio of the 504 killing-Yano tensor and the 528 states maximally symmetric space. Thus we have E (dark) = mc2 (504/528) = mc2 (21/22) which is about 95.5% of the total maximal energy density in astounding agreement with COBE, WMAP and Planck cosmological measurements as well as the type 1a supernova analysis. Finally theory and results are validated via a related theory based on the degrees of freedom of pure gravity, the theory of nonlocal elasticity as well as ‘t Hooft-Veltman renormalization method.
文摘A classical question of Yoneda asks when the tensor product of two injective modules is injective. A complete answer to this question was given by Enochs and Jenda in 1991. In this paper the analogue question for pure-injective modules is studied.
文摘We prove an Artin-Schelter regularity result for the method of twisted tensor products under a certain form. Such twisted tensor products, whose twisting maps are determined by the action on the generators, include Ore extensions and double Ore extensions. It is helpful to construct high- dimensional Artin-Schelter regular algebras.
基金supported by the Scientific and Technological Research Council of Turkey (No. 108T590).
文摘The authors consider a differentiable manifold with H-structure which is an isomorphic representation of an associative, commutative and unitial algebra. For Riemannian metric tensor fields, the φ-operators associated with r-regular H-structure are introduced. With the help of φ-operators, the hyperholomorphity condition of B-manifolds is established.
文摘Let(M,ω)be a symplectic manifold.In this paper,the authors consider the notions of musical(bemolle and diesis)isomorphisms ω~b:T M→T~*M and ω~?:T~*M→TM between tangent and cotangent bundles.The authors prove that the complete lifts of symplectic vector field to tangent and cotangent bundles is ω~b-related.As consequence of analyze of connections between the complete lift ~cω_(T M )of symplectic 2-form ω to tangent bundle and the natural symplectic 2-form dp on cotangent bundle,the authors proved that dp is a pullback o f^cω_(TM)by ω~?.Also,the authors investigate the complete lift ~cφ_T~*_M )of almost complex structure φ to cotangent bundle and prove that it is a transform by ω~?of complete lift^cφ_(T M )to tangent bundle if the triple(M,ω,φ)is an almost holomorphic A-manifold.The transform of complete lifts of vector-valued 2-form is also studied.