Sugarcane is one of the important irrigated crops in Ethiopia and its production is highly linked with its energy and water use. In this paper, identifications and quantifications of input and output, direct and indir...Sugarcane is one of the important irrigated crops in Ethiopia and its production is highly linked with its energy and water use. In this paper, identifications and quantifications of input and output, direct and indirect energy sources, and energy use of farm operations were carried out on 11 irrigation schemes of Awash River Basin. In order to grow 91.8 to 167.6 tons of cane, 47.9 to 143.4 GJ/ha of total energy was used. Average total input energies of gravity, pump surface and sprinkler scheme categories to grow 109.8, 112.7 and 136.3 ton/ha were 53.6, 68.9 and 129.2 GJ/ha, respectively. Around 90% and 74% total energies of gravity surface and sprinkler schemes were consumed as direct and indirect energies, respectively. Irrigation found to be the most energy consuming operation constituting more than 50% input energy of all scheme categories. Energy efficiency of gravity schemes was 152% and 300% higher than pump driven surface and sprinkler schemes. Energy sequestrated in cane straws burned during harvesting found to be higher than fertilizer and pumping energy demands. Use of cane straws as manure and energy sources have the potential to substitute demands which in turn needs further investigations and analysis.展开更多
A 512-bit EEPROM IP was designed by using just logic process based devices.To limit the voltages of the devices within 5.5 V,EEPROM core circuits,control gate(CG) and tunnel gate(TG) driving circuits,DC-DC converters:...A 512-bit EEPROM IP was designed by using just logic process based devices.To limit the voltages of the devices within 5.5 V,EEPROM core circuits,control gate(CG) and tunnel gate(TG) driving circuits,DC-DC converters:positive pumping voltage(VPP=4.75 V) ,negative pumping voltage(VNN=4.75 V) ,and VNNL(=VNN/2) generation circuit were proposed.In addition,switching powers CG high voltage(CG_HV) ,CG low voltage(CG_LV) ,TG high voltage(TG_HV) ,TG low voltage(TG_LV) ,VNNL_CG and VNNL_TG switching circuit were supplied for the CG and TG driving circuit.Furthermore,a sequential pumping scheme and a new ring oscillator with a dual oscillation period were proposed.To reduce a power consumption of EEPROM in the write mode,the reference voltages VREF_VPP for VPP and VREE_VNN for VNN were used by dividing VDD(1.2 V) supply voltage supplied from the analog block in stead of removing the reference voltage generators.A voltage level detector using a capacitive divider as a low-power DC-DC converter design technique was proposed.The result shows that the power dissipation is 0.34μW in the read mode,13.76μW in the program mode,and 13.66μW in the erase mode.展开更多
We present our efforts towards power scaling of Er:Lu_(2)O_(3)lasers at 2.85μm.By applying a dual-end diode-pumped resonator scheme,we achieve an output power of 14.1 W at an absorbed pump power of 59.7 W with a slop...We present our efforts towards power scaling of Er:Lu_(2)O_(3)lasers at 2.85μm.By applying a dual-end diode-pumped resonator scheme,we achieve an output power of 14.1 W at an absorbed pump power of 59.7 W with a slope efficiency of 26%.In a single-end pumped resonator scheme,an output power of 10.1 W is reached under 41.9 W of absorbed pump power.To the best of our knowledge,this is the first single crystalline mid-infrared rare-earth-based solid-state laser with an output power exceeding 10 W at room temperature.展开更多
We compare different discreted DCF Raman amplifier configurations, including single-stage and dual-stage. The optimum design with respect to SNR degradation, compromise linear and nonlinear impairments.
The dynamics of air entrainment and suppression schemes in a pump sump are investigated. Four different turbulence models(standard k-ε model, realizable k-ε model, renormalization group(RNG) k-ε model and shear-str...The dynamics of air entrainment and suppression schemes in a pump sump are investigated. Four different turbulence models(standard k-ε model, realizable k-ε model, renormalization group(RNG) k-ε model and shear-stress transport(SST) k-ω model) and the volume of fluid(VOF) multiphase model are employed to simulate the three-dimensional unsteady turbulent flow in a pump sump. The dynamic processes of air entrainment are simulated under conditions of relatively high discharge and low submergence; the mechanism of air entrainment is discussed in detail. Then suppression means for air entrainment is adopted by placing a circular plate on the intake pipe at three different heights. The results show: the position and structure of the free-surface vortices, sidewall-attached vortices, back wall-attached vortices, and floor-attached vortices calculated by SST k-ω turbulence model agree well with the experimental data. The two main contributors for air entrainment are pressure difference and vortex strength. By placing a circular plate in the middle of the intake pipe under water, air entrainment is suppressed because vortex strength is reduced.展开更多
Microcombs are revolutionizing optoelectronics by providing parallel, mutually coherent wavelengthchannels for time-frequency metrology and information processing. To implement this essential function inintegrated pho...Microcombs are revolutionizing optoelectronics by providing parallel, mutually coherent wavelengthchannels for time-frequency metrology and information processing. To implement this essential function inintegrated photonic systems, it is desirable to drive microcombs directly with an on-chip laser in a simpleand flexible way. However, two major difficulties have prevented this goal: (1) generating mode-lockedcomb states usually requires a significant amount of pump power and (2) the requirement to align laser andresonator frequency significantly complicates operation and limits the tunability of the comb lines. Here, weaddress these problems by using microresonators on an AlGaAs on-insulator platform to generate dark-pulsemicrocombs. This highly nonlinear platform dramatically relaxes fabrication requirements and leads to arecord-low pump power of <1 mW for coherent comb generation. Dark-pulse microcombs facilitated bythermally controlled avoided mode crossings are accessed by direct distributed feedback laser pumping.Without any feedback or control circuitries, the comb shows good coherence and stability. With around150 mW on-chip power, this approach also leads to an unprecedentedly wide tuning range of over one freespectral range (97.5 GHz). Our work provides a route to realize power-efficient, simple, and reconfigurablemicrocombs that can be seamlessly integrated with a wide range of photonic systems.展开更多
We demonstrate high efficiency second harmonic generation(SHG) of near infrared femtosecond pulses using a BiB3 O6 crystal in a single-pass tight focusing geometry setup. A frequency doubling efficiency of 63% is achi...We demonstrate high efficiency second harmonic generation(SHG) of near infrared femtosecond pulses using a BiB3 O6 crystal in a single-pass tight focusing geometry setup. A frequency doubling efficiency of 63% is achieved, which is,to the best of our knowledge, the highest value ever reported in the femtosecond regime for such low energy(nJ-level)pumping pulses. Theoretical analyses of the pumping scheme focusing waist and the SHG efficiency are performed, by numerically solving the three wave mixing coupled equations in the plane-wave scenario and by running simulations with a commercial full 3 D code. Simulations show a good agreement with the experimental data regarding both the efficiency and the pulse spectral profile. The simulated SHG pulse temporal profile presents the characteristic features of the group velocity mismatch broadening in a ‘thick' crystal.展开更多
文摘Sugarcane is one of the important irrigated crops in Ethiopia and its production is highly linked with its energy and water use. In this paper, identifications and quantifications of input and output, direct and indirect energy sources, and energy use of farm operations were carried out on 11 irrigation schemes of Awash River Basin. In order to grow 91.8 to 167.6 tons of cane, 47.9 to 143.4 GJ/ha of total energy was used. Average total input energies of gravity, pump surface and sprinkler scheme categories to grow 109.8, 112.7 and 136.3 ton/ha were 53.6, 68.9 and 129.2 GJ/ha, respectively. Around 90% and 74% total energies of gravity surface and sprinkler schemes were consumed as direct and indirect energies, respectively. Irrigation found to be the most energy consuming operation constituting more than 50% input energy of all scheme categories. Energy efficiency of gravity schemes was 152% and 300% higher than pump driven surface and sprinkler schemes. Energy sequestrated in cane straws burned during harvesting found to be higher than fertilizer and pumping energy demands. Use of cane straws as manure and energy sources have the potential to substitute demands which in turn needs further investigations and analysis.
基金Project supported by the Second Stage of Brain Korea 21
文摘A 512-bit EEPROM IP was designed by using just logic process based devices.To limit the voltages of the devices within 5.5 V,EEPROM core circuits,control gate(CG) and tunnel gate(TG) driving circuits,DC-DC converters:positive pumping voltage(VPP=4.75 V) ,negative pumping voltage(VNN=4.75 V) ,and VNNL(=VNN/2) generation circuit were proposed.In addition,switching powers CG high voltage(CG_HV) ,CG low voltage(CG_LV) ,TG high voltage(TG_HV) ,TG low voltage(TG_LV) ,VNNL_CG and VNNL_TG switching circuit were supplied for the CG and TG driving circuit.Furthermore,a sequential pumping scheme and a new ring oscillator with a dual oscillation period were proposed.To reduce a power consumption of EEPROM in the write mode,the reference voltages VREF_VPP for VPP and VREE_VNN for VNN were used by dividing VDD(1.2 V) supply voltage supplied from the analog block in stead of removing the reference voltage generators.A voltage level detector using a capacitive divider as a low-power DC-DC converter design technique was proposed.The result shows that the power dissipation is 0.34μW in the read mode,13.76μW in the program mode,and 13.66μW in the erase mode.
基金supported by the National Natural Science Foundation of China(Nos.62175132,61605100,and 12174212)the Natural Science Foundation of Shandong Province(Nos.ZR2020MF116 and ZR2019MF061)the Young Scholars Program of Shandong University。
文摘We present our efforts towards power scaling of Er:Lu_(2)O_(3)lasers at 2.85μm.By applying a dual-end diode-pumped resonator scheme,we achieve an output power of 14.1 W at an absorbed pump power of 59.7 W with a slope efficiency of 26%.In a single-end pumped resonator scheme,an output power of 10.1 W is reached under 41.9 W of absorbed pump power.To the best of our knowledge,this is the first single crystalline mid-infrared rare-earth-based solid-state laser with an output power exceeding 10 W at room temperature.
文摘We compare different discreted DCF Raman amplifier configurations, including single-stage and dual-stage. The optimum design with respect to SNR degradation, compromise linear and nonlinear impairments.
基金supported by the National Natural Science Foundation of China(Grant No.51422906)
文摘The dynamics of air entrainment and suppression schemes in a pump sump are investigated. Four different turbulence models(standard k-ε model, realizable k-ε model, renormalization group(RNG) k-ε model and shear-stress transport(SST) k-ω model) and the volume of fluid(VOF) multiphase model are employed to simulate the three-dimensional unsteady turbulent flow in a pump sump. The dynamic processes of air entrainment are simulated under conditions of relatively high discharge and low submergence; the mechanism of air entrainment is discussed in detail. Then suppression means for air entrainment is adopted by placing a circular plate on the intake pipe at three different heights. The results show: the position and structure of the free-surface vortices, sidewall-attached vortices, back wall-attached vortices, and floor-attached vortices calculated by SST k-ω turbulence model agree well with the experimental data. The two main contributors for air entrainment are pressure difference and vortex strength. By placing a circular plate in the middle of the intake pipe under water, air entrainment is suppressed because vortex strength is reduced.
文摘Microcombs are revolutionizing optoelectronics by providing parallel, mutually coherent wavelengthchannels for time-frequency metrology and information processing. To implement this essential function inintegrated photonic systems, it is desirable to drive microcombs directly with an on-chip laser in a simpleand flexible way. However, two major difficulties have prevented this goal: (1) generating mode-lockedcomb states usually requires a significant amount of pump power and (2) the requirement to align laser andresonator frequency significantly complicates operation and limits the tunability of the comb lines. Here, weaddress these problems by using microresonators on an AlGaAs on-insulator platform to generate dark-pulsemicrocombs. This highly nonlinear platform dramatically relaxes fabrication requirements and leads to arecord-low pump power of <1 mW for coherent comb generation. Dark-pulse microcombs facilitated bythermally controlled avoided mode crossings are accessed by direct distributed feedback laser pumping.Without any feedback or control circuitries, the comb shows good coherence and stability. With around150 mW on-chip power, this approach also leads to an unprecedentedly wide tuning range of over one freespectral range (97.5 GHz). Our work provides a route to realize power-efficient, simple, and reconfigurablemicrocombs that can be seamlessly integrated with a wide range of photonic systems.
基金financially supported by the European Union’s Horizon 2020 research and innovation programmeunder grant agreement No.654148(Laserlab-Europe)the Euratom research and training program 2014-2018 under grant agreement No.633053+1 种基金the Fundacao para a Ciencia e a Tecnologia(FCT,Lisboa)under grant No.PD/BD/114327/2016the framework of the Advanced Program in Plasma Science and Engineering(APPLAuSE,sponsored by FCT under grant No.PD/00505/2012)at Instituto Superior Técnico(IST)
文摘We demonstrate high efficiency second harmonic generation(SHG) of near infrared femtosecond pulses using a BiB3 O6 crystal in a single-pass tight focusing geometry setup. A frequency doubling efficiency of 63% is achieved, which is,to the best of our knowledge, the highest value ever reported in the femtosecond regime for such low energy(nJ-level)pumping pulses. Theoretical analyses of the pumping scheme focusing waist and the SHG efficiency are performed, by numerically solving the three wave mixing coupled equations in the plane-wave scenario and by running simulations with a commercial full 3 D code. Simulations show a good agreement with the experimental data regarding both the efficiency and the pulse spectral profile. The simulated SHG pulse temporal profile presents the characteristic features of the group velocity mismatch broadening in a ‘thick' crystal.