期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Pulsed electric current treatment: from regulating non-metallic inclusions to inhibiting submerged entry nozzle clogging 被引量:1
1
作者 Wen-wen Yu Jin-gang Qi Heng Cui 《Journal of Iron and Steel Research International》 2025年第4期833-848,共16页
Non-metallic inclusions in steel are a significant challenge,affecting material properties and leading to issues such as stress concentration,cracking,and accelerated corrosion.Current methods for removing inclusions,... Non-metallic inclusions in steel are a significant challenge,affecting material properties and leading to issues such as stress concentration,cracking,and accelerated corrosion.Current methods for removing inclusions,including bubble,electromagnetic stirring,filtration separation,fluid flow,and sedimentation,often struggle with the removal of fine inclusions.Apart from these known methods,pulsed electric current(PEC),as an emerging technology,has demonstrated immense potential and environmental advantages.PEC offers adjustable current parameters and simple equipment,making it an attractive alternative to traditional methods.Its green energy-saving features and excellent results in regulating inclusion morphology and migration,as well as inhibiting submerged entry nozzle(SEN)clogging,make it a promising technology.In comparison to continuous current technology,PEC has shown significant advantages in regulating inclusions,not only improving purification efficiency but also demonstrating outstanding performance in flow stability and energy consumption.The ability of PEC to efficiently reduce inclusion numbers enhances the purity and quality of molten steel,improving its mechanical properties.Currently,the theoretical basis for controlling the movement of inclusions by current is mainly composed of three major theories:the double electric layer theory,electromagnetic force reverse separation theory,and electric free energy drive theory.These theories together form an important framework for researchers to understand and optimize the behavior of impurity movement controlled by electric current.Looking ahead,PEC is expected to pave the way for new solutions in directional regulation of inclusion migration,efficient inclusion removal,SEN clogging prevention,and the purification of molten steel. 展开更多
关键词 pulsed electric current Non-metallic inclusion REGULATION Submerged entry nozzle CLOGGING
原文传递
Realizing Ultra-fast Spheroidization of GCr15 Bearing Steel by Analyzing the Correlation of Carbide Dissolution Law and Pulsed Electric Current Parameters Through Machine Learning
2
作者 Zhongxue Wang Le Ren +2 位作者 Yating Zhang Mengcheng Zhou Xinfang Zhang 《Acta Metallurgica Sinica(English Letters)》 2025年第7期1207-1218,共12页
Traditional heat treatment methods require a significant amount of time and energy to affect atomic diffusion and enhance the spheroidization process of carbides in bearing steel,while pulsed current can accelerate at... Traditional heat treatment methods require a significant amount of time and energy to affect atomic diffusion and enhance the spheroidization process of carbides in bearing steel,while pulsed current can accelerate atomic diffusion to achieve ultra-fast spheroidization of carbides.However,the understanding of the mechanism by which different pulse current parameters regulate the dissolution behavior of carbides requires a large amount of experimental data to support,which limits the application of pulse current technology in the field of heat treatment.Based on this,quantify the obtained pulse current processing data to create an important dataset that could be applied to machine learning.Through machine learning,the mechanism of mutual influence between carbide regulation and various factors was elucidated,and the optimal spheroidization process parameters were determined.Compared to the 20 h required for traditional heat treatment,the application of pulsed electric current technology achieved ultra-fast spheroidization of GCr15 bearing steel within 90 min. 展开更多
关键词 Bearing steel pulsed electric current Machine learning SPHEROIDIZATION CARBIDE
原文传递
Removing prior particle boundaries in a powder superalloy based on the interaction between pulsed electric current and chain-like structure 被引量:2
3
作者 Shuyang Qin Longge Yan Xinfang Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第28期95-100,共6页
The chain-like prior particle boundaries(PPBs)as a kind of stubborn harmful precipitate will hinder atomic diffusion and particle connection.They can only be broken into nanoscale through thermal deformation(1160–120... The chain-like prior particle boundaries(PPBs)as a kind of stubborn harmful precipitate will hinder atomic diffusion and particle connection.They can only be broken into nanoscale through thermal deformation(1160–1200℃).Here,treated by the pulsed electric current at 800℃,PPBs were dissolved quickly as a result of the interaction between the pulsed electric current and the chain-like structure.According to the electromigration theory and the calculation results,the high current density regions will be mainly produced at the gaps due to the conductivity difference between the precipitates and the matrix.The atomic diffusion flux caused by the pulsed electric current is proportional to the current density.Therefore,the existence of a large number of gaps in the chain-like PPBs will make the high current density regions play a more positive role in fast-dissolution. 展开更多
关键词 Prior particle boundaries Chain-like structure Fast-dissolution pulsed electric current
原文传递
Evolution of melt convection in a liquid metal driven by a pulsed electric current 被引量:1
4
作者 Yanyi Xu Yunhu Zhang +4 位作者 Tianqing Zheng Yongyong Gong Changjiang Song Hongxing Zheng Qijie Zhai 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第8期424-432,共9页
Gain refinement in metal alloy can be achieved by applying an electric current pulse(ECP)in solidification process.Forced flow inside the melt has been proved to be a key role in grain refinement.In this paper,the flu... Gain refinement in metal alloy can be achieved by applying an electric current pulse(ECP)in solidification process.Forced flow inside the melt has been proved to be a key role in grain refinement.In this paper,the fluid flow inside Ga 20 wt%-In 12 wt%-Sn alloy induced by a damping sinusoidal ECP flowing through two parallel electrodes into the cylindrical melt was investigated by both experimental measurements and numerical simulations.Experimental results showed that a strong descending jet was induced beneath the bottom of electrodes under the application of ECP.Besides,it was found that flow intensity increases with the increase of amplitude,frequency,and pulse width,respectively.In order to unlock the formation mechanism of flow pattern and the relevance of flow intensity varied with electrical parameters,a three-dimensional numerical model under the application of ECP was established.Meanwhile,a comparative study was conducted by numerical simulations to reveal the distributions of electromagnetic fields and forced flow.Numerical results showed that the downward Lorentz force induced by ECP was concentrated beneath the bottom of electrodes.This downward Lorentz force induces a descending jet and provokes a global forced flow.According to numerical simulations,the evolution of flow intensity with electrical parameters under the application of ECP can be understood by the time averaged impulse of Lorentz force. 展开更多
关键词 pulsed electric current flow measurement numerical simulation MAGNETOHYDRODYNAMICS
原文传递
Modification of Corrosion Resistance of the Plain Carbon Steels by Pulsed Electric Current 被引量:1
5
作者 Jun-Yang Gao Xue-Bing Liu +1 位作者 Hai-Fei Zhou Xin-Fang Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第12期1233-1239,共7页
The fracture of pipelines caused by corrosion cracks and the resulting oil and gas leakage can lead to great environmentalpollution and economic losses. These negative effects are due to serious corrosion of the plain... The fracture of pipelines caused by corrosion cracks and the resulting oil and gas leakage can lead to great environmentalpollution and economic losses. These negative effects are due to serious corrosion of the plain carbon steels used for armorof flexible pipe in oil and gas transmission medium. However, corrosion resistance of carbon steel armors has yet to beimproved. In this study, the relationship between corrosion resistance and pearlite fraction in the plain carbon steels hasbeen investigated through the application of pulsed electric current. Based on immersion test and electrochemical mea-surement, pulsed electric current increases the corrosion resistance of the plain carbon steels by reducing the fraction ofpearlite phase. Pitting corrosion, which tends to initiate by galvanic corrosion of ferrite and cementite, is therefore inhibiteddue to the decrease in pearlite fraction (mixture of ferrite and cementite) under electropulsing. 展开更多
关键词 Corrosion resistance PEARLITE pulsed electric current Plain carbon steel
原文传递
Migration Behavior of Impurity Iron in Silicon Melt Under Pulsed Electric Current
6
作者 Mengcheng Zhou Yaxiong Dai +2 位作者 Changhao Liu Shengli Ding Xinfang Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第5期889-903,共15页
The impurity iron in silicon material will seriously affect the photoelectric conversion efficiency of silicon solar cells.However,the traditional silicon purification method has the disadvantages of long cycle,high e... The impurity iron in silicon material will seriously affect the photoelectric conversion efficiency of silicon solar cells.However,the traditional silicon purification method has the disadvantages of long cycle,high energy consumption and serious pollution.In this study,an efficient and green pulsed electric current purification technology is proposed.The electromigration effect of iron elements,the current density gradient driving of iron phase,and the gravity of iron phase all affect the migration behavior of iron phase in silicon melt under pulsed electric current.Regardless of the depth of electrode insertion into the silicon melt,the solubility of iron in silicon decreases under the pulsed electric current,which helps to form the iron phase.At the same time,the iron phase tends to sink toward the bottom under the influence of gravity.When the electrode is shallowly inserted,a non-uniform electric field is formed in the silicon melt,and the iron phase is mainly driven by the current density gradient to accelerate sink toward the bottom.When the electrode is fully inserted,an approximately uniform electric field is formed in the silicon melt,and iron elements are preferentially migrated to the cathode by electromigration,forming iron phase sinking at the cathode.The study of impurity iron migration behavior in silicon melt under pulsed electric current provides a new approach for the purification of polycrystalline silicon. 展开更多
关键词 Metallurgical silicon pulsed electric current Iron-rich phase current density gradient ELECTROMIGRATION
原文传递
Altering the Residual Stress in High-Carbon Steel through Promoted Dislocation Movement and Accelerated Carbon Diffusion by Pulsed Electric Current
7
作者 Kun Yi Siqi Xiang +2 位作者 Mengcheng Zhou Xinfang Zhang Furui Du 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2023年第9期1511-1522,共12页
Residual stress in high-carbon steel affects the dimensional accuracy, structural stability, and integrity of components. Although the evolution of residual stress under an electric field has received extensive attent... Residual stress in high-carbon steel affects the dimensional accuracy, structural stability, and integrity of components. Although the evolution of residual stress under an electric field has received extensive attention, its elimination mechanism has not been fully clarified. In this study, it was found that the residual stress of high-carbon steel could be effectively relieved within a few minutes through the application of a low density pulse current. The difference between the current pulse treatment and traditional heat treatment in reducing residual stress is that the electric pulse provides additional Gibbs free energy for the system, which promotes dislocation annihilation and carbon atom diffusion to form carbides, thus reducing the free energy of the system. The electroplastic and thermal effects of the pulse current promoted the movement of dislocations under the electric field, thus eliminating the internal stress caused by dislocation entanglement. The precipitation of carbides reduced the carbon content of the steel matrix and lattice shrinkage, thereby reducing the residual tensile stress. Considering that a pulsed current has the advantages of small size, small power requirement, continuous output, and continuously controllable parameters, it has broad application prospects for eliminating residual stress. 展开更多
关键词 Residual stress pulsed electric current Carbide precipitation
原文传递
Ultrafast annihilation of irradiation-induced defects using pulsed electric current for damage performance regeneration
8
作者 Biqian Li Rui Ma +1 位作者 Shu Li Xinfang Zhang 《Journal of Materials Science & Technology》 CSCD 2024年第27期247-262,共16页
As the most important irradiation-induced defects,dislocation loop and copper-rich nanocluster are the major contributors to the embrittlement of the neutron-irradiated reactor pressure vessel steels.In this study,suc... As the most important irradiation-induced defects,dislocation loop and copper-rich nanocluster are the major contributors to the embrittlement of the neutron-irradiated reactor pressure vessel steels.In this study,such nano-defects were introduced into the material by 3 MeV Fe ions up to the dose of 1 dpa at high temperature(290℃)to simulate neutron irradiation.It was found that pulsed electric current can effectively reduce 95%of irradiation-induced hardening.Correspondingly,the characterization results showed that almost all the dislocation loops disappeared and the quantity of copper-rich nanoclusters also reduced greatly at relatively low temperature(450℃),and the process took only 20 min.Mean-while,it was qualitatively proved by positron annihilation spectroscopy that the number of irradiation-induced vacancy-type defects and solute-enriched clusters was significantly decreased after electropuls-ing.Furthermore,under the pulsed electric field,the rapid annihilation of the dislocation loops due to their accelerated collision with vacancies can remove the nucleation sites of the copper-rich nanoclusters and make them become dispersed,further promoting the nanoclusters that lack nucleation sites dissolv-ing faster.Therefore,this electropulsing treatment provides a practical“in-situ”performance repair tech-nology to extend the service life of reactor pressure vessel steels by regulating the interaction between vacancies,interstitial atoms and irradiation-induced defects. 展开更多
关键词 Irradiation-induced defect Dislocation loop Copper-rich nanocluster pulsed electric current Performance regeneration
原文传递
Effect of electrodes and thermal insulators on grain refinement by electric current pulse 被引量:6
9
作者 尹振兴 梁冬 +2 位作者 陈玉娥 程誉锋 翟启杰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期92-97,共6页
The application of electric current pulse(ECP) to a solidification process refers to the immersion of electrodes into the liquid metal and the employment of thermal insulators on the upper surface of metal.In order ... The application of electric current pulse(ECP) to a solidification process refers to the immersion of electrodes into the liquid metal and the employment of thermal insulators on the upper surface of metal.In order to ascertain the effects of these two factors on the structure refinement by the ECP technique,three groups of experiments were performed with different types of electrodes or various thermal insulators.By the comparison between solidification structures under different conditions,it is followed that the electrode and the thermal insulator have an obvious influence on the grain refinement under an applied ECP,and further analysis demonstrates that the thermal conditions of the liquid surface play a vital role in the modification of solidification structure.Also,the results support the viewpoint that most of the equiaxed grains originate from the liquid surface subjected to an ECP. 展开更多
关键词 solidification structure grain refinement electric current pulse electrode thermal insulator
在线阅读 下载PDF
Migration behavior of solidification nuclei in pure Al melt under effect of electric current pulse 被引量:5
10
作者 李希彬 芦凤桂 +1 位作者 崔海超 唐新华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期192-198,共7页
A mathematical model considering free nuclei was developed to reveal the migration behavior of the free nuclei. Numerical simulation results show that most of the nuclei on the top surface of the melt move downwards a... A mathematical model considering free nuclei was developed to reveal the migration behavior of the free nuclei. Numerical simulation results show that most of the nuclei on the top surface of the melt move downwards and distribute randomly inside the Al melt, which induces more nucleation sites resulting in grain refinement. At the same time, the effect of nuclei size on the nuclei distribution and refinement employing electric current pulse (ECP) was also investigated. The smaller nuclei migrate a short distance with the Al melt at lower speed. But for the larger nuclei, the migration downwards with higher speed benefits the refinement of interior grains of the melt. The research results help to better understand the refinement process and provide a more reasonable explanation of the grain refinement mechanism using ECP. 展开更多
关键词 electric current pulse solidification process grain refinement mechanism migration behavior numerical simulation
在线阅读 下载PDF
Using Machine Learning Methods to Predict the Ductile‑to‑Brittle Transition Temperature Shift in RPV Steel Under Different Pulse Current Parameters
11
作者 Yating Zhang Biqian Li +3 位作者 Shu Li Mengcheng Zhou Shengli Ding Xinfang Zhang 《Acta Metallurgica Sinica(English Letters)》 2025年第6期1029-1040,共12页
The reactor pressure vessel(RPV)is susceptible to brittle fracture due to the influence of ion irradiation and high temperature,which presents a significant risk to the safe operation of nuclear reactors.It has been d... The reactor pressure vessel(RPV)is susceptible to brittle fracture due to the influence of ion irradiation and high temperature,which presents a significant risk to the safe operation of nuclear reactors.It has been demonstrated that pulsed electric current can effectively address the issue of embrittlement in RPV steel.However,the relationship between pulse parameters(duty ratio,frequency,current,and time)and the effectiveness of pulse current processing has not been systematically studied.The application of machine learning methods enables autonomous exploration and learning of the relationship between data.Consequently,this study proposes a machine learning method based on the random forest model to establish the relationship between the parameters of electrical pulses and the repair effect of RPV steel.A generative adversarial network is employed to enhance data diversity and scalability,while a particle swarm optimization algorithm is utilized to optimize the initialization weights and biases of the random forest model,aiming to improve the model’s fitting ability and training performance.The results indicate that the coefficient of determination R-square(R^(2)),root mean squared error and mean absolute error values are 0.934,0.045,and 0.036,respectively,suggesting that the model has the potential to predict the performance recovery of RPV steel after pulsed electric field treatment.The prediction of the impact of pulse current parameters on the repair effect will help to enhance and optimize the repair process,thereby providing a scientific basis for pulse current repair processing. 展开更多
关键词 pulsed electric current Data argumentation Reactor pressure vessel repair prediction Ductile-to-brittle transition temperature shift
原文传递
Influences of pulse electric current treatment on solidification microstructures and mechanical properties of Al-Si piston alloys 被引量:6
12
作者 Ding Hongsheng Zhang Yong +5 位作者 Jiang Sanyong Chen Ruirun Zhao Zhilong Guo Jingjie Xu Daming Fu Hengzhi 《China Foundry》 SCIE CAS 2009年第1期24-31,共8页
Three kinds of AI-Si piston alloys were prepared and subjected to pulse electric current treatment (PECT) at different pouring temperatures. Some aspects of the solidification microstructures were examined including... Three kinds of AI-Si piston alloys were prepared and subjected to pulse electric current treatment (PECT) at different pouring temperatures. Some aspects of the solidification microstructures were examined including the morphology and the distribution of the matrix and the secondary phases by using of optical microscopy (OM), SEM and EDS methods. Results indicate that PECT can refine the grains of α-AI in the alloys as effectively as chemical modification by sodium salt. The processing parameters of PECT on the multi-component AI-Si alloys were then optimized through the testing of tensile strength, elongation and microhardness of the prepared alloys. A new theory was put forward to explain the mechanism of PECT. 展开更多
关键词 pulse electric current AI-Si piston alloys SOLIDIFICATION
在线阅读 下载PDF
Columnar to Equiaxed Transition During Solidification of Small Ingot by Using Electric Current Pulse 被引量:8
13
作者 LI Jie MA Jian-hong SONG Chang-jiang LI Zhi-jun GAO Yu-lai ZHAI Qi-jie 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2009年第6期7-12,共6页
A new approach to applying the electric current pulse (ECP) with parallel electrodes to the promotion of the transition from columnar crystal to equiaxed crystal and the improvement of macrosegregation was introduce... A new approach to applying the electric current pulse (ECP) with parallel electrodes to the promotion of the transition from columnar crystal to equiaxed crystal and the improvement of macrosegregation was introduced. The ECP was applied to different stages of the solidification. The results showed that the application of the ECP in both the initial stage (the thickness of solidified shell reached 2 mm approximately) and the late stage (the thickness of solidified shell reached 14 mm approximately) of solidification can promote the columnar to equiaxed transition (CET). The analysis showed that during solidification, a large number of nuclei around the upper surface fell off due to ECP, which subsequently showered on the melt and impinged the growth front of the columnar crystal. Therefore, the CEToccurred. In addition, this method was also employed to influence the solidification process of bearing steel, and the results showed that the structure was changed from columnar crystal to equiaxed crystal, indicating that ECP can enhance the homogeneity of structure and composition of bearing steel. 展开更多
关键词 columnar to equiaxed transition SOLIDIFICATION electric current pulse MACROSEGREGATION
原文传递
Formation of Dense Inclusion Buildup on Submerged Entry Nozzle by Electric Current Pulse 被引量:8
14
作者 Wen-Bin Dai Xiu-Li Zhou +4 位作者 Xin Yang Guang-Peng Tang Dan-Bin Jia Nai-Liang Cheng Jing-Kun Yu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第5期500-504,共5页
In this work, low-density electric current pulse (ECP) has been applied to submerged entry nozzle (SEN) and its effect on the morphology of the inclusion buildup and the distribution of the inclusions in slab has ... In this work, low-density electric current pulse (ECP) has been applied to submerged entry nozzle (SEN) and its effect on the morphology of the inclusion buildup and the distribution of the inclusions in slab has been explored. The results reveal that under the unique effects of ECP, part of small inclusions less than 10 μm is expelled through the boundary layer along the current direction to form dense inclusion buildup. This method is of great potential to prolong the service life of SEN and improve the quality of the steel product. 展开更多
关键词 electric current pulse (ECP) Submerged entry nozzle (SEN) DENSIFICATION Transport
原文传递
Microstructure and Temperature Distribution in ZnAl_2O_4 Sintered Body by Pulse Electric Current 被引量:3
15
作者 Dongming ZHANG, Zhengyi FU and Jingkun GUOState Key Lab. of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第6期526-528,共3页
Microstructure of reaction sintering of ZnAl2O4 at 1500℃ by hot-pressing(HP) and pulse electric current was investigated. The results indicated that the existed cracks in sintered body were caused by structure mismat... Microstructure of reaction sintering of ZnAl2O4 at 1500℃ by hot-pressing(HP) and pulse electric current was investigated. The results indicated that the existed cracks in sintered body were caused by structure mismatch. It is the evidence that periodical temperature field existed during pulse electric current sintering of nonconductive materials. The distance between high temperature areas was related to die diameter. 展开更多
关键词 Pulse electric current sintering Reaction sintering ZnAl2O4 Microstructure Temperature distribution.
在线阅读 下载PDF
Solidification of Pb–Al Alloys Under the Influence of Electric Current Pulses 被引量:4
16
作者 Tauseef Ahmed Hong-Xiang Jiang +1 位作者 Wang Li Jiu-Zhou Zhao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第8期842-852,共11页
Continuous solidification experiments are carried out with Pb–Al alloys under the influence of the electric current pulses(ECPs). The results demonstrate that the ECPs mainly affect the microstructure formation thr... Continuous solidification experiments are carried out with Pb–Al alloys under the influence of the electric current pulses(ECPs). The results demonstrate that the ECPs mainly affect the microstructure formation through changing the energy barrier for the nucleation of the minority phase droplets(MPDs) and minority phase particles(MPPs) during cooling Pb–Al alloys in the liquid–liquid and liquid–solid phase transformation temperature ranges in advance of the solidification of the matrix liquid. For Pb–Al alloys with Al-rich droplets/particles as the minority phase, the ECPs lower the energy barriers for the nucleation of the MPDs/MPPs and cause a significant increase in the nucleation rate of the MPDs/MPPs and, thus,promote the formation of Pb–Al alloys with a well-dispersed or even nanoparticles dispersed microstructure. The ECPs parameters show an important influence on the microstructure formation of Pb–Al alloys. The refinement extent of the MPDs/MPPs increases with the increase in the peak current density. For a given peak current density, the refinement extent of the MPDs/MPPs increases with the increases in the pulse frequency and pulse width first, and then level off and become asymptotic. 展开更多
关键词 Immiscible alloys SOLIDIFICATION electric current pulses NUCLEATION Microstructure formation
原文传递
Equivalent Resistance in Pulse Electric Current Sintering
17
作者 张东明 FUZheng-yi +1 位作者 YUANRun-zhang GUOJing-kun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第2期30-32,共3页
The sintering resistance for conductive TiB2 and non-conductive A12O3 as well as empty die during pulse current sintering were investigated in this paper. Equivalent resistances were measured by current and valtage du... The sintering resistance for conductive TiB2 and non-conductive A12O3 as well as empty die during pulse current sintering were investigated in this paper. Equivalent resistances were measured by current and valtage during sintering the conductive and non-conductive materials in the same conditions. It is found that the current paths for conductive are different from those for non-conductive materials. For non-conductive materials, sintering resistances are influenced by powder sizes and heating rates, which indicates that pulse current has some interaction with non-conductive powders. For conductive TiB2 , sintering resistances are influenced by heating rates and ball-milling time, which indicates the effect of powders activated by spark. 展开更多
关键词 RESISTANCE pulse electric current sintering INTERACTION
在线阅读 下载PDF
Ultrafast regulation of nano-scale matrix defects using electrical property discrepancies to delay material embrittlement
18
作者 Shuyang Qin Xinfang Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第24期25-36,共12页
Nano-scale phases can enhance or reduce the mechanical properties of materials,so it is very important to control the size of the phases.Copper-rich nanoclusters as matrix defects will significantly reduce the perform... Nano-scale phases can enhance or reduce the mechanical properties of materials,so it is very important to control the size of the phases.Copper-rich nanoclusters as matrix defects will significantly reduce the performance of materials for key nuclear power components,while traditional heat treatment method has a technical bottleneck for the dissolution of nanoclusters.A new method of using the inherent electrical property discrepancies between the matrix material and the nanoclusters to effectively dissolve the nanoclusters through pulsed electric current to realize the recovery of material aging degradation performance is proposed.The performance evolution of simulated steel in the aging-external field repair cycle was studied,and it was found the dislocations as the preferred nucleation sites of nanoclusters were regulated in virtue of the non-thermal effect of current,resulting in a decrease in dislocation density and entanglement release.In the subsequent thermal aging process,the embrittlement rate of the aged and tempered material trained by the electric pulse was slower than that of the untreated sample.When moving dislocations are pinned by nanoclusters under high stress,nano-scale dislocations can be induced into the clusters.The dislocations near the nanoclusters and the newly formed nano-scale dislocations in the nanoclusters act as fast diffusion channels,which can further accelerate the dissolution of the nanoclusters. 展开更多
关键词 Matrix defects regulation Copper-rich nanocluster pulsed electric current Embrittlement delay
原文传递
A Pulsed Electromagnet for Laser Wakefield Electron Acceleration Experiments
19
作者 Septimiu Balascuta 《Journal of Electromagnetic Analysis and Applications》 2016年第3期33-41,共9页
Laser Wakefield plasma acceleration of electrons to energies above 10 GeV, may be possible in the new high power Laser beam facilities. The design of an Electron Spectrometer with an electro-magnet with adjustable mag... Laser Wakefield plasma acceleration of electrons to energies above 10 GeV, may be possible in the new high power Laser beam facilities. The design of an Electron Spectrometer with an electro-magnet with adjustable magnetic field is proposed for the characterization of electron energy spectrum with a precision better than 10% for the entire energy range from 0.5 GeV to 38 GeV. The expected precision in the measurement of the electron energy is calculated as a function of the magnetic field, of the electron energy and of the magnet length. To outline the advantages offered by a pulsed electromagnet with high magnetic fields, the mass and the electric power lost in the coils of a 4 m long electromagnet with continuous current and Iron yoke are calculated. 展开更多
关键词 Electron Spectrometer ELECTROMAGNET Electron Beam Magnetic Field pulsed electric current DC electric current
在线阅读 下载PDF
Mechanical Manipulation of Electrical Behaviors of Piezoelectric Semiconductor Nanofibers by Time-Dependent Stresses 被引量:1
20
作者 Haoyu Huang Zhenghua Qian Jiashi Yang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2020年第5期579-585,共7页
We study electric currents in a piezoelectric semiconductor fiber under a constant voltage and time-dependent axial stresses applied locally.From a nonlinear numerical analysis based on a one-dimensional phenomenologi... We study electric currents in a piezoelectric semiconductor fiber under a constant voltage and time-dependent axial stresses applied locally.From a nonlinear numerical analysis based on a one-dimensional phenomenological model using the commercial software COMSOL,it is found that pulse electric currents can be produced by periodic or time-harmonic stresses.The pulse currents can be tuned by the amplitude and frequency of the applied stress.The result obtained provides a new approach for the mechanical control of electric currents in piezoelectric semiconductor fibers and has potential applications in piezotronics. 展开更多
关键词 Piezoelectric semiconductor nanofiber Tunable pulse electric current Time-dependent stress Piezotronics
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部