BlotMan is a protein blotting device that allows generating multiple membranes from a single polyacrylamide gel. To transfer all proteins uniformly with the same efficiency regardless of protein size, BlotMan employs ...BlotMan is a protein blotting device that allows generating multiple membranes from a single polyacrylamide gel. To transfer all proteins uniformly with the same efficiency regardless of protein size, BlotMan employs pulse-width-modulated (PWM) voltage that applies a higher average voltage to a larger protein species. BlotMan can be controlled not only by its custom-made interface but also by a smart phone via Bluetooth technology. In this study, we examined effects of PWM signals (50%, 60%, and 80% duty cycle) on transfer efficiency and signal intensity in comparison to a constant voltage signal (100% duty cycle). The result revealed that in response to the same average voltage of 150 V, a lower duty cycle with a higher maximum voltage increased transfer efficiency as well as sharpness of transferred proteins. We validated BlotMan’s capability using a chondrosarcoma cell line (SW1353 cells) and a breast cancer cell line (MDA-MB231 cells) in response to antitumor chemical agents. BlotMan successfully generated 5 membranes from a single gel and detected 5 protein species such as c-Src, eukaryotic translation initiation factor 2 alpha (eIF2), phosphorylated eIF2, lamin B, and actin. Collectively, we demonstrated herein that BlotMan reduces an amount of protein samples by generating multiple membranes from a single gel and improving signal intensity with PWM voltage signals.展开更多
A generic pulse width modulation(PWM) strategy is proposed for the multi-leg voltage source inverter(VSI).First, the multi-leg VSI is modeled, which is independent from the load structure. Secondly, the proposed P...A generic pulse width modulation(PWM) strategy is proposed for the multi-leg voltage source inverter(VSI).First, the multi-leg VSI is modeled, which is independent from the load structure. Secondly, the proposed PWM strategy is deduced by inverting the mathematical model of the multileg VSI. According to the relationship between the leg number of VSIs and the phase number of electrical machines, the multi-leg VSI-fed machine drives are classified into two types:matched and unmatched applications. The leg numbers of VSIs and the phase number of electrical machines are equal in matched applications while they are different in unmatched applications. The existing PWM strategies cannot be directly used for both matched and unmatched applications. However,the proposed PWM strategy can be general for both matched and unmatched applications, and no modifications are required. The effectiveness of the proposed PWM strategy is verified by experimental results.展开更多
文摘BlotMan is a protein blotting device that allows generating multiple membranes from a single polyacrylamide gel. To transfer all proteins uniformly with the same efficiency regardless of protein size, BlotMan employs pulse-width-modulated (PWM) voltage that applies a higher average voltage to a larger protein species. BlotMan can be controlled not only by its custom-made interface but also by a smart phone via Bluetooth technology. In this study, we examined effects of PWM signals (50%, 60%, and 80% duty cycle) on transfer efficiency and signal intensity in comparison to a constant voltage signal (100% duty cycle). The result revealed that in response to the same average voltage of 150 V, a lower duty cycle with a higher maximum voltage increased transfer efficiency as well as sharpness of transferred proteins. We validated BlotMan’s capability using a chondrosarcoma cell line (SW1353 cells) and a breast cancer cell line (MDA-MB231 cells) in response to antitumor chemical agents. BlotMan successfully generated 5 membranes from a single gel and detected 5 protein species such as c-Src, eukaryotic translation initiation factor 2 alpha (eIF2), phosphorylated eIF2, lamin B, and actin. Collectively, we demonstrated herein that BlotMan reduces an amount of protein samples by generating multiple membranes from a single gel and improving signal intensity with PWM voltage signals.
基金The National Natural Science Foundation of China(No.51607038)the Natural Science Foundation of Jiangsu Province(No.BK20160673)+1 种基金the National Basic Research Program of China(973 Program)(No.2013CB035603)China Postdoctoral Science Foundation(No.2015M581697,2016T90401)
文摘A generic pulse width modulation(PWM) strategy is proposed for the multi-leg voltage source inverter(VSI).First, the multi-leg VSI is modeled, which is independent from the load structure. Secondly, the proposed PWM strategy is deduced by inverting the mathematical model of the multileg VSI. According to the relationship between the leg number of VSIs and the phase number of electrical machines, the multi-leg VSI-fed machine drives are classified into two types:matched and unmatched applications. The leg numbers of VSIs and the phase number of electrical machines are equal in matched applications while they are different in unmatched applications. The existing PWM strategies cannot be directly used for both matched and unmatched applications. However,the proposed PWM strategy can be general for both matched and unmatched applications, and no modifications are required. The effectiveness of the proposed PWM strategy is verified by experimental results.