用微型催化反应装置结合X射线衍射(XRD)、H2化学吸附、NH3吸附-程序升温脱附(NH3-TPD)和H2-程序升温还原等多种物理化学手段研究了丙烷脱氢负载型Pt Sn Na/SUZ-4催化剂中Na+助剂组分的作用。结果表明,Na+组分可中和SUZ-4载体表面的强酸...用微型催化反应装置结合X射线衍射(XRD)、H2化学吸附、NH3吸附-程序升温脱附(NH3-TPD)和H2-程序升温还原等多种物理化学手段研究了丙烷脱氢负载型Pt Sn Na/SUZ-4催化剂中Na+助剂组分的作用。结果表明,Na+组分可中和SUZ-4载体表面的强酸中心、提高催化剂的Pt金属分散度、抑制脱氢产物的裂解和积炭的生成,从而提高催化剂的丙烷脱氢选择性和反应稳定性。但是过量Na+组分的存在会削弱Sn物种与载体之间的相互作用,使其易被还原,导致催化剂丙烷脱氢活性显著下降。展开更多
In this study, a novel core-shell structure of ZSM-5@Mg(Al)O(abbreviated as Z@MA) was designed by using the sol-gel method, and the influence of different weight ratios of Mg(Al)O/ZSM-5 on the structure and catalytic ...In this study, a novel core-shell structure of ZSM-5@Mg(Al)O(abbreviated as Z@MA) was designed by using the sol-gel method, and the influence of different weight ratios of Mg(Al)O/ZSM-5 on the structure and catalytic performance was investigated. The as-obtained materials were characterized by XRD, N_2-physisorption, SEM, FT-IR, NH_3-TPD and XPS analyses. The results showed that, with the increase of the weight ratio of Mg(Al)O/ZSM-5, the thickness of Mg(Al)O shell was improved, and the pore structure and physiochemical properties of core-shell materials were directly modified. After introduction of Mg(Al)O, the acidity properties of different materials were significantly suppressed. Meanwhile, more Sn oxide species in Z@MA could facilitate the anchoring of Pt on the support. By effectively employing these modifications, the capacity of the catalysts to accommodate coke was significanty improved and the carbon deposits were migrated from active metal to the carrier. When the weight ratio was equal to 3, the catalyst PtSnNa/Z@MA showed a highest conversion and high selectivity in propane dehydrogenation.展开更多
文摘用微型催化反应装置结合X射线衍射(XRD)、H2化学吸附、NH3吸附-程序升温脱附(NH3-TPD)和H2-程序升温还原等多种物理化学手段研究了丙烷脱氢负载型Pt Sn Na/SUZ-4催化剂中Na+助剂组分的作用。结果表明,Na+组分可中和SUZ-4载体表面的强酸中心、提高催化剂的Pt金属分散度、抑制脱氢产物的裂解和积炭的生成,从而提高催化剂的丙烷脱氢选择性和反应稳定性。但是过量Na+组分的存在会削弱Sn物种与载体之间的相互作用,使其易被还原,导致催化剂丙烷脱氢活性显著下降。
文摘In this study, a novel core-shell structure of ZSM-5@Mg(Al)O(abbreviated as Z@MA) was designed by using the sol-gel method, and the influence of different weight ratios of Mg(Al)O/ZSM-5 on the structure and catalytic performance was investigated. The as-obtained materials were characterized by XRD, N_2-physisorption, SEM, FT-IR, NH_3-TPD and XPS analyses. The results showed that, with the increase of the weight ratio of Mg(Al)O/ZSM-5, the thickness of Mg(Al)O shell was improved, and the pore structure and physiochemical properties of core-shell materials were directly modified. After introduction of Mg(Al)O, the acidity properties of different materials were significantly suppressed. Meanwhile, more Sn oxide species in Z@MA could facilitate the anchoring of Pt on the support. By effectively employing these modifications, the capacity of the catalysts to accommodate coke was significanty improved and the carbon deposits were migrated from active metal to the carrier. When the weight ratio was equal to 3, the catalyst PtSnNa/Z@MA showed a highest conversion and high selectivity in propane dehydrogenation.