The development of cost-effective and high-efficiency catalysts for sustainable hydrogen production through electrocatalytic hydrogen evolution reaction(HER) is crucial yet remains challenging. In this work, we synthe...The development of cost-effective and high-efficiency catalysts for sustainable hydrogen production through electrocatalytic hydrogen evolution reaction(HER) is crucial yet remains challenging. In this work, we synthesized two types of bimetallic Pt Ni nanoparticles embedded in N-doped porous carbons derived from Ni-ABDC(5-aminoisophthalate) using both in-situ and ex-situ Pt inclusion methods. The in-situ Pt doping notably disrupted the effective growth of Ni-ABDC nanostrips owing to strong interactions between Pt and ABDC, resulting in an amorphous nanostructure. The optimized PtinNi-NC exhibited remarkable HER performance with a low overpotential of 29 mV at 10 mA/cm^(2), a Tafel slope of 47.4 mV/dec, and a current retention of 91.2% after 200 h in 1.0 mol/L KOH solution, surpassing the performance of Ni-NC, PtexNi-NC, and Pt/C. This research demonstrates the rational design and preparation of transition metal-based coordination polymer-derived metal-carbon nanomaterials with low Pt loading,emphasizing their considerable potential in energy conversion and storage technologies.展开更多
Significance of unstable species leaching was for the first time demonstrated on MOF-derived catalysts by taking PtNi-C as an example,that was instructive for the relevant catalyst fabrication and performance study.Pt...Significance of unstable species leaching was for the first time demonstrated on MOF-derived catalysts by taking PtNi-C as an example,that was instructive for the relevant catalyst fabrication and performance study.PtNi-C catalyst was synthesized by combining Pt nanoparticles with Ni-BTC after annealing in the tube furnace and the unstable Ni species can be easily leached out in nitric acid,and the stable PtNi nanoparticles trapped in the graphite carbon layer were obtained.The greatly improved catalytic ability for alcohol fuels oxidation was verified by comparing the fresh and acid leached catalysts in terms of the high peak current density,specific and mass activity and rapid charge transfer kinetics and high catalytic stability.The current work guides the importance of unstable assistant promoter removal for the MOF derived catalysts.展开更多
A simple one-pot method was developed to prepare Pt Ni alloy nanoparticles,which can be self-decorated on multiwalled carbon nanotubes in [BMIm][BF4] ionic liquid.The nanohybrids are targeting stable nanocatalysts for...A simple one-pot method was developed to prepare Pt Ni alloy nanoparticles,which can be self-decorated on multiwalled carbon nanotubes in [BMIm][BF4] ionic liquid.The nanohybrids are targeting stable nanocatalysts for fuel cell applications.The sizes of the supported Pt Ni nanoparticles are uniform and as small as 1–2 nm.Pt-to-Ni ratio was controllable by simply selecting a Pt Ni alloy target.The alloy nanoparticles with Pt-to-Ni ratio of 1:1 show high catalytic activity and stability for methanol electro-oxidation.The performance is much higher compared with those of both Pt-only nanoparticles and commercial Pt/C catalyst.The electronic structure characterization on the Pt Ni nanoparticles demonstrates that the electrons are transferred from Ni to Pt,which can suppress the CO poisoning effect.展开更多
Ni-base catalysts are promising candidate for the hydrogenation of furfural(FAL) to high-value chemicals.However,slow intermediate desorption and low selectivity limit its implementation.Identifying the catalytic perf...Ni-base catalysts are promising candidate for the hydrogenation of furfural(FAL) to high-value chemicals.However,slow intermediate desorption and low selectivity limit its implementation.Identifying the catalytic performance of each active sites is vital to design hydrogenation catalyst,and tuning the geometrical sites at molecule level in PtNi could lead to the modification of electronic structure,and thus the selectity for the hydrogenation of FAL was modulated.Herein,PtNi hollow nanoframes(PtNi HNFs) with three dimensional(3 D) molecular accessibility were synthesized,EDX results suggested that Ni was evenly distributed inside of the hollow nanoframes,whereas Pt was relatively concentrated at the edges.DFT calculation demonstrated that PtNi significant decrease the desorption energy of the intermediates.This strategy could not only enhance the desorption of intermediates to improve the catalytic performance,but also transfer the adsorption mode of FAL on catalyst surface to selective hydrogenation of FAL to FOL or THFA.The PtNi HNFs catalyst afforded excellent catalytic performance for selective hydrogenation of a broad range of biomass-derived platform chemicals under mild conditions,especially of FAL to furfuryl alcohol(FOL),in quantitative FOL yields(99%) with a high TOF of 2.56 h^(-1).It is found that the superior performance of PtNi HNFs is attributed to its 3 D hierarchical structure and synergistic electronic effects between Pt and Ni.Besides,the kinetic study demonstrated that the activation energy for hydrogenation of FAL was as low as 54.95 kJ mol^(-1).展开更多
In this work,highly monodispersed Pt-Ni alloy nanoparticles were directly deposited on carbon substrate through a facile electrodeposition strategy in the solvent system of N,N-dimethylformamide(DMF).A series of carbo...In this work,highly monodispersed Pt-Ni alloy nanoparticles were directly deposited on carbon substrate through a facile electrodeposition strategy in the solvent system of N,N-dimethylformamide(DMF).A series of carbon supported Pt-Ni alloy electrocatalysts were synthesized under different applied electrode potentials.Among all as-obtained samples,the Pt-Ni/C electrocatalyst deposited at-1.73 V exhibits the optimal specific activity up to 1.850 mA cm^(-2)at 0.9 V vs.RHE,which is 6.85 times higher than that of the commercial Pt/C.Comprehensive physiochemical characterizations and computational evaluations via density functional theory were conducted to unveil the nucleation and growth mechanism of PtNi alloy formation.Compared to the aqueous solution,DMF solvent molecule must not be neglected in avoiding particle agglomeration and synthesis of monodispersed nanoparticles.During the alloy co-deposition process,Ni sites produced through the reduction of Ni(Ⅱ)precursor not only facilitates Pt-Ni alloy crystal nucleation but also in favor of further Pt reduction on the Ni-inserted Pt surface.As for the deposition potential,it adjusts the final particle size.This work provides a hopeful extended Pt-based catalyst layer production strategy for proton exchange membrane fuel cells and a new idea for the nucleation and growth mechanism exploration for electrodeposited Pt alloy.展开更多
PtNi/C nanoparticles with different atomic ratios of Pt/Ni were produced in pulse microwave assisted polyol process. Transmission electron microscopy(TEM) images show uniform morphology. X-ray diffraction(XRD) pattern...PtNi/C nanoparticles with different atomic ratios of Pt/Ni were produced in pulse microwave assisted polyol process. Transmission electron microscopy(TEM) images show uniform morphology. X-ray diffraction(XRD) pattern plus energy dispersive X-ray(EDX) spectroscopy suggests pure composition. Cyclic voltammogram study reveals that PtNi/C nanoparticles synthesized in pulse microwave assisted polyol process have better catalytic activity for the oxidation of methanol to carbon dioxide than those synthesized in continuous process.展开更多
基金financially supported by National Natural Science Foundation of China (No. 21601137)Basic Science and Technology Research Project of Wenzhou, Zhejiang Province (No. G20240038)+2 种基金the Special Basic Cooperative Research Programs of Yunnan Provincial Undergraduate Universities Association (Nos. 202101BA070001-031, 202101BA070001-042 and 202301BA070001-093)Yunnan Province Young and Middle-aged Academic and Technical Leaders Reserve Talent Project (No. 202105AC160060)Yunnan Province High-level Talent Training Support Program “Youth Top Talent” Project (2020)。
文摘The development of cost-effective and high-efficiency catalysts for sustainable hydrogen production through electrocatalytic hydrogen evolution reaction(HER) is crucial yet remains challenging. In this work, we synthesized two types of bimetallic Pt Ni nanoparticles embedded in N-doped porous carbons derived from Ni-ABDC(5-aminoisophthalate) using both in-situ and ex-situ Pt inclusion methods. The in-situ Pt doping notably disrupted the effective growth of Ni-ABDC nanostrips owing to strong interactions between Pt and ABDC, resulting in an amorphous nanostructure. The optimized PtinNi-NC exhibited remarkable HER performance with a low overpotential of 29 mV at 10 mA/cm^(2), a Tafel slope of 47.4 mV/dec, and a current retention of 91.2% after 200 h in 1.0 mol/L KOH solution, surpassing the performance of Ni-NC, PtexNi-NC, and Pt/C. This research demonstrates the rational design and preparation of transition metal-based coordination polymer-derived metal-carbon nanomaterials with low Pt loading,emphasizing their considerable potential in energy conversion and storage technologies.
基金supported by the National Natural Science Foundation of China(21229301,21403126)Research Foundation of Education Bureau of Hubei Province,China(D20131302)~~
基金supported by the National Natural Science Foundation of China(Nos.21603041,21972124)the Priority Academic Program Development of Jiangsu Higher Education Institutionthe support of the Foundation of Excellent Doctoral Dissertation of Yangzhou University。
文摘Significance of unstable species leaching was for the first time demonstrated on MOF-derived catalysts by taking PtNi-C as an example,that was instructive for the relevant catalyst fabrication and performance study.PtNi-C catalyst was synthesized by combining Pt nanoparticles with Ni-BTC after annealing in the tube furnace and the unstable Ni species can be easily leached out in nitric acid,and the stable PtNi nanoparticles trapped in the graphite carbon layer were obtained.The greatly improved catalytic ability for alcohol fuels oxidation was verified by comparing the fresh and acid leached catalysts in terms of the high peak current density,specific and mass activity and rapid charge transfer kinetics and high catalytic stability.The current work guides the importance of unstable assistant promoter removal for the MOF derived catalysts.
基金supported by the National Natural Science Foundation of China(No.61274019)the Soochow University-Western University Joint Centre for Synchrotron Radiation Research+1 种基金the Collaborative Innovation Center of Suzhou Nano Science & Technologythe Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘A simple one-pot method was developed to prepare Pt Ni alloy nanoparticles,which can be self-decorated on multiwalled carbon nanotubes in [BMIm][BF4] ionic liquid.The nanohybrids are targeting stable nanocatalysts for fuel cell applications.The sizes of the supported Pt Ni nanoparticles are uniform and as small as 1–2 nm.Pt-to-Ni ratio was controllable by simply selecting a Pt Ni alloy target.The alloy nanoparticles with Pt-to-Ni ratio of 1:1 show high catalytic activity and stability for methanol electro-oxidation.The performance is much higher compared with those of both Pt-only nanoparticles and commercial Pt/C catalyst.The electronic structure characterization on the Pt Ni nanoparticles demonstrates that the electrons are transferred from Ni to Pt,which can suppress the CO poisoning effect.
基金financially supported by the National Key R&D Program of China (No. 2019YFD1100601)the National Key R & D Program of China (2018YFB1501500)+2 种基金the National Natural Science Foundation of China (Nos. 51776206 and 51536009)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01N092)the ‘‘Transformational Technologies for Clean Energy and Demonstration”, the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA21060102)。
文摘Ni-base catalysts are promising candidate for the hydrogenation of furfural(FAL) to high-value chemicals.However,slow intermediate desorption and low selectivity limit its implementation.Identifying the catalytic performance of each active sites is vital to design hydrogenation catalyst,and tuning the geometrical sites at molecule level in PtNi could lead to the modification of electronic structure,and thus the selectity for the hydrogenation of FAL was modulated.Herein,PtNi hollow nanoframes(PtNi HNFs) with three dimensional(3 D) molecular accessibility were synthesized,EDX results suggested that Ni was evenly distributed inside of the hollow nanoframes,whereas Pt was relatively concentrated at the edges.DFT calculation demonstrated that PtNi significant decrease the desorption energy of the intermediates.This strategy could not only enhance the desorption of intermediates to improve the catalytic performance,but also transfer the adsorption mode of FAL on catalyst surface to selective hydrogenation of FAL to FOL or THFA.The PtNi HNFs catalyst afforded excellent catalytic performance for selective hydrogenation of a broad range of biomass-derived platform chemicals under mild conditions,especially of FAL to furfuryl alcohol(FOL),in quantitative FOL yields(99%) with a high TOF of 2.56 h^(-1).It is found that the superior performance of PtNi HNFs is attributed to its 3 D hierarchical structure and synergistic electronic effects between Pt and Ni.Besides,the kinetic study demonstrated that the activation energy for hydrogenation of FAL was as low as 54.95 kJ mol^(-1).
文摘In this work,highly monodispersed Pt-Ni alloy nanoparticles were directly deposited on carbon substrate through a facile electrodeposition strategy in the solvent system of N,N-dimethylformamide(DMF).A series of carbon supported Pt-Ni alloy electrocatalysts were synthesized under different applied electrode potentials.Among all as-obtained samples,the Pt-Ni/C electrocatalyst deposited at-1.73 V exhibits the optimal specific activity up to 1.850 mA cm^(-2)at 0.9 V vs.RHE,which is 6.85 times higher than that of the commercial Pt/C.Comprehensive physiochemical characterizations and computational evaluations via density functional theory were conducted to unveil the nucleation and growth mechanism of PtNi alloy formation.Compared to the aqueous solution,DMF solvent molecule must not be neglected in avoiding particle agglomeration and synthesis of monodispersed nanoparticles.During the alloy co-deposition process,Ni sites produced through the reduction of Ni(Ⅱ)precursor not only facilitates Pt-Ni alloy crystal nucleation but also in favor of further Pt reduction on the Ni-inserted Pt surface.As for the deposition potential,it adjusts the final particle size.This work provides a hopeful extended Pt-based catalyst layer production strategy for proton exchange membrane fuel cells and a new idea for the nucleation and growth mechanism exploration for electrodeposited Pt alloy.
文摘PtNi/C nanoparticles with different atomic ratios of Pt/Ni were produced in pulse microwave assisted polyol process. Transmission electron microscopy(TEM) images show uniform morphology. X-ray diffraction(XRD) pattern plus energy dispersive X-ray(EDX) spectroscopy suggests pure composition. Cyclic voltammogram study reveals that PtNi/C nanoparticles synthesized in pulse microwave assisted polyol process have better catalytic activity for the oxidation of methanol to carbon dioxide than those synthesized in continuous process.