期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Grain boundary engineered bifunctional PtCuMo aerogel for anodizing reactions in broad-spectrum direct liquid fuel cells
1
作者 Jingxiu Liu Qianzhuo Lei +5 位作者 Jin Zhang Lishou Ban Yanyi Liu Longchao Zhuo Xijun Liu Jia He 《Nano Research》 2026年第1期290-300,共11页
The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in a... The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in alcohol systems,we propose a rational catalyst design strategy focusing on morphological and compositional optimization.Sodium borohydride-derived PtCuMo alloy aerogels(AA)exhibit abundant grain boundary defects,while solvothermally prepared nanowire arrays(NA)maintain excellent single-crystalline characteristics.Density functional theory calculations demonstrate that engineered grain boundaries can effectively broaden the adsorption energy window for key reaction intermediates,enabling superior adaptability to diverse catalytic pathways.By precisely controlling Cu content,we identified Pt_(3)Cu_(3)Mo_(0.5)AA as the optimal catalyst configuration,demonstrating 150% enhancement in methanol oxidation reaction activity compared to Pt_(3)Cu_(6)Mo_(0.5)NA(1.5 vs.0.6 A·mg_(Pt)^(-1))and 17% improvement in ethanol oxidation reaction performance versus Pt_(3)Cu_(1)Mo_(0.5)NA(0.82 vs.0.70 A·mg_(Pt)^(-1)).Practical application testing using gas diffusion electrodes(anode loading:0.85 mg_(Pt)·cm^(-2))achieved a mass-specific power density of 14.14 W·g_(Pt)^(-1)in 1:1 methanol/ethanol blends,representing a 3.5-fold improvement over commercial Pt/C benchmarks.This work establishes a fundamental framework for developing highperformance,broad-spectrum electrocatalysts in advanced fuel cell systems. 展开更多
关键词 grain boundary engineering ptcumo nanowires methanol oxidation reaction ethanol oxidation reaction broad-spectrum direct liquid fuel cells
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部