The catalytic oxidation of carbon monoxide(CO)to carbon dioxide(CO_(2))is an effective way to eliminate the harmful effects of CO,with catalysts playing a crucial role in this process.Although Pt-based catalysts have ...The catalytic oxidation of carbon monoxide(CO)to carbon dioxide(CO_(2))is an effective way to eliminate the harmful effects of CO,with catalysts playing a crucial role in this process.Although Pt-based catalysts have been widely used for CO oxidation,the low-temperature activity and thermal stability still need to be improved.In this study,a Pt/ZnO@SiO_(2) composite structure was constructed by coating Pt/ZnO cat-alysts with a thin SiO_(2) layer.The influence of SiO_(2) overcoating layer on the sintering behavior of Pt nanoparticles(NPs)and on the catalytic performance of the Pt catalyst for CO oxidation was investigated in detail.And the results were compared with those without SiO_(2) overcoating layer.Investigations found that the SiO_(2) coating layer effectively inhibited the sintering of Pt NPs at high temperatures,enhancing the thermal stability.In addition,the SiO_(2) overcoating layer improved the catalytic activity of the Pt-based catalyst by inducing higher concentration of oxygen vacancies on the catalyst surface as well as weakening the CO adsorption,which could enhance the adsorption and activation ability of oxygen.Meanwhile,the presence of SiO_(2) overcoating layer improved the catalytic stability during CO oxidation reaction.This work provides an important reference for the design and development of supported Pt-based catalysts with excellent thermal stability and catalytic activity for CO oxidation.展开更多
To achieve the goals of the peak carbon dioxide emissions and carbon neutral,the development and utilization of sustainable clean energy are extremely important.Hydrogen fuel cells are an important system for converti...To achieve the goals of the peak carbon dioxide emissions and carbon neutral,the development and utilization of sustainable clean energy are extremely important.Hydrogen fuel cells are an important system for converting hydrogen energy into electrical energy.However,the slow hydrogen oxidation reaction(HOR)kinetics under alkaline conditions has limited its development.Therefore,elucidating the catalytic mechanism of HOR in acidic and alkaline media is of great significance for the construction of highly active and stable catalysts.In terms of practicality,Pt is still the primary choice for commercialization of fuel cells.On the above basis,we first introduced the hydrogen binding energy theory and bifunctional theory used to describe the HOR activity,as well as the pH dependence.After that,the rational design strategies of Pt-based HOR catalysts were systematically classified and summarized from the perspective of activity descriptors.In addition,we further emphasized the importance of theoretical simulations and in situ characterization in revealing the HOR mechanism,which is crucial for the rational design of catalysts.Moreover,the practical application of Pt-based HOR catalysts in fuel cells was also presented.In closing,the current challenges and future development directions of HOR catalysts were discussed.This review will provide a deep understanding for exploring the mechanism of highly efficient HOR catalysts and the development of fuel cells.展开更多
With the increasing consumption of fossil fuels,proton exchange membrane fuel cells(PEMFCs)have attracted considerable attention as green and sustainable energy conversion devices.The slow kinetics of the cathodic oxy...With the increasing consumption of fossil fuels,proton exchange membrane fuel cells(PEMFCs)have attracted considerable attention as green and sustainable energy conversion devices.The slow kinetics of the cathodic oxygen reduction reaction(ORR)has a major impact on the performance of PEMFCs,and although platinum(Pt)can accelerate the reaction rate of the ORR,the scarcity and high cost of Pt resources still limit the development of PEMFCs.Therefore,the development of low-cost high-performance ORR catalysts is essential for the commercial application and development of PEMFCs.This paper reviews the research progress of researchers on Pt-based ORR catalysts in recent years,including Pt/C catalysts,Pt-based alloy catalysts,Pt-based intermetallic compounds,and Pt-based single-atom catalysts(SACs),with a focus on Pt-based alloy catalysts with different nanostructures.We described in detail the difficulties and solutions in the research process of various ORR catalysts and explained the principle of their activity enhancement with density functional theory(DFT).In addition,an outlook on the development of Pt-based catalysts is given,and reducing the amount of Pt used and improving the performance of catalysts are the directions to work on in the coming period.展开更多
Pt catalysts are commonly used for chemical reaction processes due to its high catalytic activity and selectivity.Notably,the size of metal particles often has a significant impact on the performance of the metal-load...Pt catalysts are commonly used for chemical reaction processes due to its high catalytic activity and selectivity.Notably,the size of metal particles often has a significant impact on the performance of the metal-loaded catalysts.Therefore,developing highly efficiently synthesis method for the size control of Pt catalysts has great development prospects and research value.In this study,high-throughput size tuning of Pt-based catalysts was achieved by carbonizing the carriers.The experimental and characterization results showed that the size of the loaded Pt nanoparticles varied with different concentrations of glucose solution during carriers carbonization process.The reduction of 4-nitrophenol as a template reaction indicated that the reaction rate constant of the catalyst is approximately linear with the size of Pt particles.Importantly,a laboratory-built high-throughput synthesis system was applied for the catalyst synthesis,which enhances the automation of the laboratory exploratory experiments and makes it possible to synthesize catalysts with controllable size in batches.展开更多
In this paper,CeO2 with a pore size of 2-4 nm was synthesized by hydrothermal method.The CeO2 modified graphene-supported Pt catalyst was prepared by the microwave-assisted ethylene glycol reduction chloroplatinic aci...In this paper,CeO2 with a pore size of 2-4 nm was synthesized by hydrothermal method.The CeO2 modified graphene-supported Pt catalyst was prepared by the microwave-assisted ethylene glycol reduction chloroplatinic acid method,and the effect of the addition of CeO2 prepared by different hydrothermal reaction time on the catalytic performance of Pt-based catalysts was investigated.The microstructures of CeO2 and catalysts were characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),specific surface area and pore size analyzer(BET),scanning electron microscopy(SEM)and electron spectroscopy(EDAX),transmission electron microscopy(TEM),and the catalysts electrochemical performance was tested by electrochemical workstation.The results show that the catalytic performance of the four catalysts with CeO2 is better than that of the catalyst without CeO2.Adding CeO2 with a specific surface area of 120.15 m2/g prepared by hydrothermal reaction time of 39 h to Pt/C synthesis catalyst,its electrocatalytic performance,stability and resistance to poisoning are the best.The electrochemical active surface area is 102.83 m2/g,the peak current density of ethanol oxidation is 757.17 A/g and steady-state current density of 1100 s is 108.17 A/g which shows the lowest activation energy for ethanol oxidation reaction.When the cyclic voltammogram is scanned for 500 cycles,the oxidation peak current density retention rate is 87.74%.展开更多
The regulation of interface electron-transfer and catalytic kinetics is very important to design the efficient electrocatalyst for alkaline hydrogen oxidation reaction(HOR).Here,we show the Pt-Ni alloy nanoparticles(P...The regulation of interface electron-transfer and catalytic kinetics is very important to design the efficient electrocatalyst for alkaline hydrogen oxidation reaction(HOR).Here,we show the Pt-Ni alloy nanoparticles(PtNi_(2))have an enhanced HOR activity compared with single component Pt catalyst.While,the interface electron-transfer kinetics of PtNi_(2)catalyst exhibits a very wide electron-transfer speed distribution.When combined with carbon dots(CDs),the interface charge transfer of PtNi_(2)-CDs composite is optimized,and then the PtNi_(2)-5 mg CDs exhibits about 2.67 times and 4.04 times higher mass and specific activity in 0.1 M KOH than that of 20%commercial Pt/C.In this system,CDs also contribute to trapping H^(+)and H_(2)O generated during HOR,tuning hydrogen binding energy(HBE),and regulating interface electron transfer.This work provides a deep understanding of the interface catalytic kinetics of Pt-based alloys towards highly efficient HOR catalysts design.展开更多
Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)...Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)ultrathin nanosheets is fabricated and used as high-performance anode electrocatalysts for formic acid-/alcohol-air fuel cells.The modified electronic structure of Pt,enhanced hydroxyl adsorption,and abundant exterior defects afford Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C high intrinsic anodic electrocatalytic activity to boost the power densities of direct formic acid-/methanol-/ethanol-/ethylene glycol-/glycerol-air fuel cells,and the corresponding peak power density of Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C is respectively 129.7,142.3,105.4,124.3,and 128.0 mW cm^(-2),considerably outperforming Pt/C.Operando in situ Fourier transform infrared reflection spectroscopy reveals that formic acid oxidation on Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C occurs via a CO_(2)-free direct pathway.Density functional theory calculations show that the presence of Ag,Bi,and Te in Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)suppresses CO^(*)formation while optimizing dehydrogenation steps and synergistic effect and modified Pt effectively enhance H_(2)O dissociation to improve electrocatalytic performance.This synthesis strategy can be extended to 43 other types of ultrathin multimetallic nanosheets(from ternary to octonary nanosheets),and efficiently capture precious metals(i.e.,Pd,Pt,Rh,Ru,Au,and Ag)from different water sources.展开更多
Developing novel oxygen reduction reaction(ORR)catalysts with high activity is urgent for proton exchange membrane fuel cells.Herein,we investigated a group of size-dependent Pt-based catalysts as promising ORR cataly...Developing novel oxygen reduction reaction(ORR)catalysts with high activity is urgent for proton exchange membrane fuel cells.Herein,we investigated a group of size-dependent Pt-based catalysts as promising ORR catalysts by density functional theory calculations,ranging from single-atom,nanocluster to bulk Pt catalysts.The results showed that the ORR overpotential of these Pt-based catalysts increased when its size enlarged to the nanoparticle scale or reduced to the single-atom scale,and the Pt_(38)cluster had the lowest ORR overpotential(0.46 V)compared with that of Pt_(111)(0.57 V)and single atom Pt(0.7 V).Moreover,we established a volcano curve relationship between the ORR overpotential and binding energy of O*(ΔE_(O*),confirming the intermediate species anchored on Pt38cluster with suitable binding energy located at top of volcano curve.The interaction between intermediate species and Pt-based catalysts were also investigated by the charge distribution and projected density of state and which further confirmed the results of volcano curve.展开更多
Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon...Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.展开更多
To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content ...To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.展开更多
Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespr...Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.展开更多
Propane dehydrogenation(PDH)is a key process for increasing the production of propylene,which is an important part of the chemical industry.Platinum-based catalysts have emerged as efficient catalysts for this reactio...Propane dehydrogenation(PDH)is a key process for increasing the production of propylene,which is an important part of the chemical industry.Platinum-based catalysts have emerged as efficient catalysts for this reaction due to their excellent activity and selectivity.However,challenges such as high platinum cost,catalyst deactivation,and side reactions remain significant barriers to their widespread use in industry.This review provides a comprehensive overview of recent advances in platinumbased catalysts for PDH,focusing on strategies to optimize their performance.We discuss the design and synthesis of Pt-based catalysts,emphasizing the role of promoters,such as Sn,Zn,Ga,and other promoters,in improving selectivity and stability.We also explore the effects of support materials and zeolite encapsulated catalysts on dispersion and activity for Pt-based catalysts.In addition,we highlight the use of machine learning to predict catalyst performance and guide the development of nextgeneration Pt-based catalyst materials.This review synthesizes insights from experimental studies and machine learning computational modeling and aims to provide a route for overcoming the limitations of Pt-based catalysts and advancing the PDH process.展开更多
The melting mechanisms of Pt-based multimetallic nanoparticles(NPs)are important to help determine their optimal melting processes.To understand the melting and coalescence behaviors of heterogeneous NPs(Pd-Pt NPs)wit...The melting mechanisms of Pt-based multimetallic nanoparticles(NPs)are important to help determine their optimal melting processes.To understand the melting and coalescence behaviors of heterogeneous NPs(Pd-Pt NPs)with various sizes and compositions,molecular dynamics(MD)simulation was employed.The MD results for larger Pd-Pt NPs with an effective diameter of4.6-7.8 nm show that PtPd alloy can form at Pd/Pt interface before Pd NP melted completely,while for Pt-core/Pdshell NP and Pd-core/Pt-shell NP,PtPd alloy formed only after Pd portion melted completely.For smaller Pd-Pt NPs with an effective diameter of 2.5-4.0 nm,PdPt alloy is not formed until both Pd and Pt NPs melted completely.Besides,the coalescence process of Pd-Pt NPs depends on the melting temperature of Pt NP when Pt composition is higher than 20 at%.Furthermore,the melting mechanisms of Pd/Pt/Ir trimetallic NPs are investigated.A two-step melting process occurs in Pd-Pt-Ir NPs and Ir-core/Ptshell/Pd-shell NP,and the melting sequence of Pd-core/Ptshell/Ir-shell NP and Pt-core/Pd-shell/Ir-shell NP is different from Pd/Pt bimetallic NPs.展开更多
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB...S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.展开更多
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by ...Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.展开更多
The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation...The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts.展开更多
Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild condit...Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild conditions and exhibit relatively poor stability,and rare studies focus on the cleavage of the stubborn interunit C-C linkages.To address this issue,we developed a Ni@AlPO_(4)/Al_(2)O_(3)catalyst in which the surface of Ni nanoparticles was decorated by AlPO_(4)species,demonstrating excellent catalytic activity and stability in the C-C and C-O cleavages.In the hydrodeoxygenation of guaiacol,this catalyst afforded99.1%conversion and 92.9%yield of cyclohexane under 1 MPa H_(2)at 230℃ for 2 h.More important,this catalyst maintained unchanged performance even after 6 runs with the conversion controlled at about50%,Mecha nistic investigations revealed that the moderate surface coverage of AlPO_(4)on Ni with the formation of Ni^(δ+)-AlPO_(4)interface significantly facilitated the conversion of methoxycyclohexanol and cyclohexanol to cyclohexane,whereas,excess coverage would also block the access to Ni site.Moreover,Ni@AlPO_(4)/Al_(2)O_(3)demonstrated broad applicability in the C-O cleavage of various typical lignin monomers and dimers into cycloalkanes.To our delight,this catalyst also displayed pretty good activity even in the simultaneous cleavage of C-C linkages and C-O bonds for the lignin-derived C-C dimers,achieving cycloalkanes as final products.As a consequence,a 27.1 wt%yield of monocycloalkanes was obtained in the depolymerization of poplar lignin with both C-C and C-O cleavages.展开更多
The metal oxide promoter decisively influences the overall performance of Fe catalysts in the direct hydrogenation of CO_(2)to C_(5+)hydrocarbons.However,the roles of metal oxide promoter for Fe catalysts,particularly...The metal oxide promoter decisively influences the overall performance of Fe catalysts in the direct hydrogenation of CO_(2)to C_(5+)hydrocarbons.However,the roles of metal oxide promoter for Fe catalysts,particularly ZrO_(2),have rarely been investigated.To plug this knowledge gap,a new Fe catalyst promoted with Na and partially reduced ZrO_(x)(Na-FeZrO_(x-9))was developed in this study;the catalyst helped produce C_(5+)hydrocarbons in remarkably high yield(26.3%at 360℃).In contrast to ZrO_(x)-free Fe-oxide,NaFeZrO_(x)-9 exhibited long-term stability for CO_(2)hydrogenation(750 h on-stream).The findings revealed multiple roles of ZrO_(x).Notably,ZrO_(x)decorated the Fe-oxide particles after calcination,thereby suppressing excess particle aggregation during the reaction,and acted as a"coke remover"to eliminate the carbon deposited on the catalyst surface.Additionally,oxygen vacancy(O_(v))sites in ZrO_(x)and electron transfer from ZrO_(x)to Fe sites facilitated the adsorption of CO_(2)at the Zr-Fe interface.展开更多
Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-perform...Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion.展开更多
The efficient hydrogenolysis of esters to alkanes is the key protocol for producing advanced biofuels from renewable plant oils or fats.Due to the low reactivity of the carbonyl group in esters,a high reaction tempera...The efficient hydrogenolysis of esters to alkanes is the key protocol for producing advanced biofuels from renewable plant oils or fats.Due to the low reactivity of the carbonyl group in esters,a high reaction temperature(>250℃)is the prerequisite to ensure high conversion of esters.Here,we report a highly dispersed MoO_(x)-Ru/C bimetallic catalyst for the efficient hydrogenolysis of esters to alkanes under 150°C.The optimal catalyst exhibits>99%conversion of methyl stearate and 99%selectivity to diesel-range alkanes,reaching a high rate of up to 2.0 mmol gcat^(–1)h^(–1),5 times higher than that of Ru/C catalyst(MoO_(x)/C is inert).Integrated experimental and theoretical investigations attribute the high performance to the abundant MoO_(x)-Ru interfacial sites on the catalyst surface,which offers high activity for the C–O cleavage of esters.Furthermore,the dispersed MoO_(x)species significantly weaken the hydrocracking activity of the metallic Ru for C–C bonds,thus yielding alkane products without carbon loss.This study provides a facile and novel strategy for the design of high-performance heterogeneous catalysts for the hydrodeoxygenation of biomass-derived esters to alkane products.展开更多
基金support provided by the National Natural Science Foundation of China(grant No.22072164)the Research Fund of Shenyang National Laboratory for Materials Science.
文摘The catalytic oxidation of carbon monoxide(CO)to carbon dioxide(CO_(2))is an effective way to eliminate the harmful effects of CO,with catalysts playing a crucial role in this process.Although Pt-based catalysts have been widely used for CO oxidation,the low-temperature activity and thermal stability still need to be improved.In this study,a Pt/ZnO@SiO_(2) composite structure was constructed by coating Pt/ZnO cat-alysts with a thin SiO_(2) layer.The influence of SiO_(2) overcoating layer on the sintering behavior of Pt nanoparticles(NPs)and on the catalytic performance of the Pt catalyst for CO oxidation was investigated in detail.And the results were compared with those without SiO_(2) overcoating layer.Investigations found that the SiO_(2) coating layer effectively inhibited the sintering of Pt NPs at high temperatures,enhancing the thermal stability.In addition,the SiO_(2) overcoating layer improved the catalytic activity of the Pt-based catalyst by inducing higher concentration of oxygen vacancies on the catalyst surface as well as weakening the CO adsorption,which could enhance the adsorption and activation ability of oxygen.Meanwhile,the presence of SiO_(2) overcoating layer improved the catalytic stability during CO oxidation reaction.This work provides an important reference for the design and development of supported Pt-based catalysts with excellent thermal stability and catalytic activity for CO oxidation.
基金support of this research by the National Natural Science Foundation of China(Nos.22179034 and 22279030)the Natural Science Foundation of Heilongjiang Province(No.ZD2023B002).
文摘To achieve the goals of the peak carbon dioxide emissions and carbon neutral,the development and utilization of sustainable clean energy are extremely important.Hydrogen fuel cells are an important system for converting hydrogen energy into electrical energy.However,the slow hydrogen oxidation reaction(HOR)kinetics under alkaline conditions has limited its development.Therefore,elucidating the catalytic mechanism of HOR in acidic and alkaline media is of great significance for the construction of highly active and stable catalysts.In terms of practicality,Pt is still the primary choice for commercialization of fuel cells.On the above basis,we first introduced the hydrogen binding energy theory and bifunctional theory used to describe the HOR activity,as well as the pH dependence.After that,the rational design strategies of Pt-based HOR catalysts were systematically classified and summarized from the perspective of activity descriptors.In addition,we further emphasized the importance of theoretical simulations and in situ characterization in revealing the HOR mechanism,which is crucial for the rational design of catalysts.Moreover,the practical application of Pt-based HOR catalysts in fuel cells was also presented.In closing,the current challenges and future development directions of HOR catalysts were discussed.This review will provide a deep understanding for exploring the mechanism of highly efficient HOR catalysts and the development of fuel cells.
基金supported by CITIC Dameng Mining Industries Limited-Guangxi University Joint Research Institute of Manganese Resources Utilization and Advanced Materials Technology,Guangxi University-CITIC Dameng Mining Industries Limited Joint Base of Postgraduate Cultivation,and State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structuresthe National Natural Science Foundation of China(Nos.11364003 and 52102470)+1 种基金Guangxi Innovation Driven Development Project Grant(Nos.AA17204100 and AA18118052)the Natural Science Foundation of Guangxi Province(No.2018GXNSFAA138186)。
文摘With the increasing consumption of fossil fuels,proton exchange membrane fuel cells(PEMFCs)have attracted considerable attention as green and sustainable energy conversion devices.The slow kinetics of the cathodic oxygen reduction reaction(ORR)has a major impact on the performance of PEMFCs,and although platinum(Pt)can accelerate the reaction rate of the ORR,the scarcity and high cost of Pt resources still limit the development of PEMFCs.Therefore,the development of low-cost high-performance ORR catalysts is essential for the commercial application and development of PEMFCs.This paper reviews the research progress of researchers on Pt-based ORR catalysts in recent years,including Pt/C catalysts,Pt-based alloy catalysts,Pt-based intermetallic compounds,and Pt-based single-atom catalysts(SACs),with a focus on Pt-based alloy catalysts with different nanostructures.We described in detail the difficulties and solutions in the research process of various ORR catalysts and explained the principle of their activity enhancement with density functional theory(DFT).In addition,an outlook on the development of Pt-based catalysts is given,and reducing the amount of Pt used and improving the performance of catalysts are the directions to work on in the coming period.
基金This work was supported by the National Key Research and Development Program of China(grant No.2022YFB3807500)National Natural Science Foundation of China(grant No.22078005)。
文摘Pt catalysts are commonly used for chemical reaction processes due to its high catalytic activity and selectivity.Notably,the size of metal particles often has a significant impact on the performance of the metal-loaded catalysts.Therefore,developing highly efficiently synthesis method for the size control of Pt catalysts has great development prospects and research value.In this study,high-throughput size tuning of Pt-based catalysts was achieved by carbonizing the carriers.The experimental and characterization results showed that the size of the loaded Pt nanoparticles varied with different concentrations of glucose solution during carriers carbonization process.The reduction of 4-nitrophenol as a template reaction indicated that the reaction rate constant of the catalyst is approximately linear with the size of Pt particles.Importantly,a laboratory-built high-throughput synthesis system was applied for the catalyst synthesis,which enhances the automation of the laboratory exploratory experiments and makes it possible to synthesize catalysts with controllable size in batches.
基金Project supported by the National Natural Science Foundation of China(51474133,51864040)the Natural Science Foundation of Inner Mongolia Autonomous Region(2018LH02006).
文摘In this paper,CeO2 with a pore size of 2-4 nm was synthesized by hydrothermal method.The CeO2 modified graphene-supported Pt catalyst was prepared by the microwave-assisted ethylene glycol reduction chloroplatinic acid method,and the effect of the addition of CeO2 prepared by different hydrothermal reaction time on the catalytic performance of Pt-based catalysts was investigated.The microstructures of CeO2 and catalysts were characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),specific surface area and pore size analyzer(BET),scanning electron microscopy(SEM)and electron spectroscopy(EDAX),transmission electron microscopy(TEM),and the catalysts electrochemical performance was tested by electrochemical workstation.The results show that the catalytic performance of the four catalysts with CeO2 is better than that of the catalyst without CeO2.Adding CeO2 with a specific surface area of 120.15 m2/g prepared by hydrothermal reaction time of 39 h to Pt/C synthesis catalyst,its electrocatalytic performance,stability and resistance to poisoning are the best.The electrochemical active surface area is 102.83 m2/g,the peak current density of ethanol oxidation is 757.17 A/g and steady-state current density of 1100 s is 108.17 A/g which shows the lowest activation energy for ethanol oxidation reaction.When the cyclic voltammogram is scanned for 500 cycles,the oxidation peak current density retention rate is 87.74%.
基金supported by the National Key R&D Program of China(2020YFA0406104,2020YFA0406101)the National MCF Energy R&D Program of China(2018YFE0306105)+5 种基金the Innovative Research Group Project of the National Natural Science Foundation of China(51821002)the National Natural Science Foundation of China(51725204,21771132,51972216,52041202)the Natural Science Foundation of Jiangsu Province(BK20190041)the Key-Area Research and Development Program of Guang Dong Province(2019B010933001)the Collaborative Innovation Center of Suzhou Nano Science&Technologythe 111 Project。
文摘The regulation of interface electron-transfer and catalytic kinetics is very important to design the efficient electrocatalyst for alkaline hydrogen oxidation reaction(HOR).Here,we show the Pt-Ni alloy nanoparticles(PtNi_(2))have an enhanced HOR activity compared with single component Pt catalyst.While,the interface electron-transfer kinetics of PtNi_(2)catalyst exhibits a very wide electron-transfer speed distribution.When combined with carbon dots(CDs),the interface charge transfer of PtNi_(2)-CDs composite is optimized,and then the PtNi_(2)-5 mg CDs exhibits about 2.67 times and 4.04 times higher mass and specific activity in 0.1 M KOH than that of 20%commercial Pt/C.In this system,CDs also contribute to trapping H^(+)and H_(2)O generated during HOR,tuning hydrogen binding energy(HBE),and regulating interface electron transfer.This work provides a deep understanding of the interface catalytic kinetics of Pt-based alloys towards highly efficient HOR catalysts design.
基金supported by the National Natural Science Foundation of China(21571038,22035004)the Education Department of Guizhou Province(2021312)+2 种基金the Foundation of Guizhou Province(2019-5666)the National Key R&D Program of China(2017YFA0700101)the State Key Laboratory of Physical Chemistry of Solid Surfaces(Xiamen University,202009)。
文摘Surface/interface engineering of a multimetallic nanostructure with diverse electrocatalytic properties for direct liquid fuel cells is desirable yet challenging.Herein,using visible light,a class of quaternary Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)ultrathin nanosheets is fabricated and used as high-performance anode electrocatalysts for formic acid-/alcohol-air fuel cells.The modified electronic structure of Pt,enhanced hydroxyl adsorption,and abundant exterior defects afford Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C high intrinsic anodic electrocatalytic activity to boost the power densities of direct formic acid-/methanol-/ethanol-/ethylene glycol-/glycerol-air fuel cells,and the corresponding peak power density of Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C is respectively 129.7,142.3,105.4,124.3,and 128.0 mW cm^(-2),considerably outperforming Pt/C.Operando in situ Fourier transform infrared reflection spectroscopy reveals that formic acid oxidation on Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)/C occurs via a CO_(2)-free direct pathway.Density functional theory calculations show that the presence of Ag,Bi,and Te in Pt_(1)Ag_(0.1)Bi_(0.16)Te_(0.29)suppresses CO^(*)formation while optimizing dehydrogenation steps and synergistic effect and modified Pt effectively enhance H_(2)O dissociation to improve electrocatalytic performance.This synthesis strategy can be extended to 43 other types of ultrathin multimetallic nanosheets(from ternary to octonary nanosheets),and efficiently capture precious metals(i.e.,Pd,Pt,Rh,Ru,Au,and Ag)from different water sources.
基金supported by the National Natural Science Foundation of China(92061125,21978294)Beijing Natural Science Foundation(Z200012)+3 种基金Jiangxi Natural Science Foundation(20212ACB213009)DNL Cooperation Fund,CAS(DNL201921)Self-deployed Projects of Ganjiang Innovation Academy,Chinese Academy of Sciences(E055B003)Hebei Natural Science Foundation(B2020103043)。
文摘Developing novel oxygen reduction reaction(ORR)catalysts with high activity is urgent for proton exchange membrane fuel cells.Herein,we investigated a group of size-dependent Pt-based catalysts as promising ORR catalysts by density functional theory calculations,ranging from single-atom,nanocluster to bulk Pt catalysts.The results showed that the ORR overpotential of these Pt-based catalysts increased when its size enlarged to the nanoparticle scale or reduced to the single-atom scale,and the Pt_(38)cluster had the lowest ORR overpotential(0.46 V)compared with that of Pt_(111)(0.57 V)and single atom Pt(0.7 V).Moreover,we established a volcano curve relationship between the ORR overpotential and binding energy of O*(ΔE_(O*),confirming the intermediate species anchored on Pt38cluster with suitable binding energy located at top of volcano curve.The interaction between intermediate species and Pt-based catalysts were also investigated by the charge distribution and projected density of state and which further confirmed the results of volcano curve.
基金Supported by the National Key Research and Development Program of China(2023YFB4104500,2023YFB4104502)the National Natural Science Foundation of China(22138013)the Taishan Scholar Project(ts201712020).
文摘Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.
基金Supported by the Science and Technology Cooperation and Exchange special project of Cooperation of Shanxi Province(202404041101014)the Fundamental Research Program of Shanxi Province(202403021212333)+3 种基金the Joint Funds of the National Natural Science Foundation of China(U24A20555)the Lvliang Key R&D of University-Local Cooperation(2023XDHZ10)the Initiation Fund for Doctoral Research of Taiyuan University of Science and Technology(20242026)the Outstanding Doctor Funding Award of Shanxi Province(20242080).
文摘To elucidate the effect of calcite-regulated activated carbon(AC)structure on low-temperature denitrification performance of SCR catalysts,this work prepared a series of Mn-Ce/De-AC-xCaCO_(3)(x is the calcite content in coal)catalysts were prepared by the incipient wetness impregnation method,followed by acid washing to remove calcium-containing minerals.Comprehensive characterization and low-temperature denitrification tests revealed that calcite-induced structural modulation of coal-derived AC significantly enhances catalytic activity.Specifically,NO conversion increased from 88.3%of Mn-Ce/De-AC to 91.7%of Mn-Ce/De-AC-1CaCO_(3)(210℃).The improved SCR denitrification activity results from the enhancement of physicochemical properties including higher Mn^(4+)content and Ce^(4+)/Ce^(3+)ratio,an abundance of chemisorbed oxygen and acidic sites,which could strengthen the SCR reaction pathways(richer NH_(3)activated species and bidentate nitrate active species).Therefore,NO removal is enhanced.
基金supports from the National Natural Science Foundation of China(Grant Nos.12305372 and 22376217)the National Key Research&Development Program of China(Grant Nos.2022YFA1603802 and 2022YFB3504100)+1 种基金the projects of the key laboratory of advanced energy materials chemistry,ministry of education(Nankai University)key laboratory of Jiangxi Province for persistent pollutants prevention control and resource reuse(2023SSY02061)are gratefully acknowledged.
文摘Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application.
文摘Propane dehydrogenation(PDH)is a key process for increasing the production of propylene,which is an important part of the chemical industry.Platinum-based catalysts have emerged as efficient catalysts for this reaction due to their excellent activity and selectivity.However,challenges such as high platinum cost,catalyst deactivation,and side reactions remain significant barriers to their widespread use in industry.This review provides a comprehensive overview of recent advances in platinumbased catalysts for PDH,focusing on strategies to optimize their performance.We discuss the design and synthesis of Pt-based catalysts,emphasizing the role of promoters,such as Sn,Zn,Ga,and other promoters,in improving selectivity and stability.We also explore the effects of support materials and zeolite encapsulated catalysts on dispersion and activity for Pt-based catalysts.In addition,we highlight the use of machine learning to predict catalyst performance and guide the development of nextgeneration Pt-based catalyst materials.This review synthesizes insights from experimental studies and machine learning computational modeling and aims to provide a route for overcoming the limitations of Pt-based catalysts and advancing the PDH process.
基金funding support from the Agency for Science,Technology and Research(A*STAR,No.SERC A1983c0032)AME Individual Research Grant(IRG)the computing resources from National Supercomputing Centre Singapore。
文摘The melting mechanisms of Pt-based multimetallic nanoparticles(NPs)are important to help determine their optimal melting processes.To understand the melting and coalescence behaviors of heterogeneous NPs(Pd-Pt NPs)with various sizes and compositions,molecular dynamics(MD)simulation was employed.The MD results for larger Pd-Pt NPs with an effective diameter of4.6-7.8 nm show that PtPd alloy can form at Pd/Pt interface before Pd NP melted completely,while for Pt-core/Pdshell NP and Pd-core/Pt-shell NP,PtPd alloy formed only after Pd portion melted completely.For smaller Pd-Pt NPs with an effective diameter of 2.5-4.0 nm,PdPt alloy is not formed until both Pd and Pt NPs melted completely.Besides,the coalescence process of Pd-Pt NPs depends on the melting temperature of Pt NP when Pt composition is higher than 20 at%.Furthermore,the melting mechanisms of Pd/Pt/Ir trimetallic NPs are investigated.A two-step melting process occurs in Pd-Pt-Ir NPs and Ir-core/Ptshell/Pd-shell NP,and the melting sequence of Pd-core/Ptshell/Ir-shell NP and Pt-core/Pd-shell/Ir-shell NP is different from Pd/Pt bimetallic NPs.
基金financially supported by the National Natural Science Foundation of China(Nos.51602018 and 51902018)the Natural Science Foundation of Beijing Municipality(No.2154052)+3 种基金the China Postdoctoral Science Foundation(No.2014M560044)the Fundamental Research Funds for the Central Universities(No.FRF-MP-20-22)USTB Research Center for International People-to-people Exchange in Science,Technology and Civilization(No.2022KFYB007)Education and Teaching Reform Foundation at University of Science and Technology Beijing(Nos.2023JGC027,KC2022QYW06,and KC2022TS09)。
文摘S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.
基金support from the Czech Science Foundation,project EXPRO,No 19-27454Xsupport by the European Union under the REFRESH—Research Excellence For Region Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048 via the Operational Programme Just Transition from the Ministry of the Environment of the Czech Republic+1 种基金Horizon Europe project EIC Pathfinder Open 2023,“GlaS-A-Fuels”(No.101130717)supported from ERDF/ESF,project TECHSCALE No.CZ.02.01.01/00/22_008/0004587).
文摘Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society.The field of catalysis has been revolutionized by single-atom catalysts(SACs),which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports.Recently,bimetallic SACs(bimSACs)have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports.BimSACs offer an avenue for rich metal–metal and metal–support cooperativity,potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton–electron exchanges,substrate activation with reversible redox cycles,simultaneous multi-electron transfer,regulation of spin states,tuning of electronic properties,and cyclic transition states with low activation energies.This review aims to encapsulate the growing advancements in bimSACs,with an emphasis on their pivotal role in hydrogen generation via water splitting.We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs,elucidate their electronic properties,and discuss their local coordination environment.Overall,we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction,the two half-reactions of the water electrolysis process.
基金the Canadian NRCan OERD Energy Innovation Programthe Natural Sciences and Engineering Research Council of Canada,and the Carbon Solution Program for their financial support.
文摘The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts.
基金supported by National Natural Science Foundation of China(22178258,22308254)China Postdoctoral Science Foundation(2023M742593,2024T170642)+1 种基金Independent Innova-tion Fund of Tianjin University(2024XQM-0021)the Open Fund of the Key Laboratory of Functional Molecular Solids(FMS2023006)。
文摘Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild conditions and exhibit relatively poor stability,and rare studies focus on the cleavage of the stubborn interunit C-C linkages.To address this issue,we developed a Ni@AlPO_(4)/Al_(2)O_(3)catalyst in which the surface of Ni nanoparticles was decorated by AlPO_(4)species,demonstrating excellent catalytic activity and stability in the C-C and C-O cleavages.In the hydrodeoxygenation of guaiacol,this catalyst afforded99.1%conversion and 92.9%yield of cyclohexane under 1 MPa H_(2)at 230℃ for 2 h.More important,this catalyst maintained unchanged performance even after 6 runs with the conversion controlled at about50%,Mecha nistic investigations revealed that the moderate surface coverage of AlPO_(4)on Ni with the formation of Ni^(δ+)-AlPO_(4)interface significantly facilitated the conversion of methoxycyclohexanol and cyclohexanol to cyclohexane,whereas,excess coverage would also block the access to Ni site.Moreover,Ni@AlPO_(4)/Al_(2)O_(3)demonstrated broad applicability in the C-O cleavage of various typical lignin monomers and dimers into cycloalkanes.To our delight,this catalyst also displayed pretty good activity even in the simultaneous cleavage of C-C linkages and C-O bonds for the lignin-derived C-C dimers,achieving cycloalkanes as final products.As a consequence,a 27.1 wt%yield of monocycloalkanes was obtained in the depolymerization of poplar lignin with both C-C and C-O cleavages.
基金financial support from the National Research Council of Science&Technology(NST)grant funded by the Ministry of Science and ICT,Republic of Korea(CAP21012-100)the Korea Institute of Energy Technology Evaluation and Planning(KETEP),under the Ministry of Trade,Industry&Energy(MOTIE),Republic of Korea(20224C10300010)the KETEP grant funded by the MOTIE(20224000000440,Sector coupling energy industry advancement manpower training program)。
文摘The metal oxide promoter decisively influences the overall performance of Fe catalysts in the direct hydrogenation of CO_(2)to C_(5+)hydrocarbons.However,the roles of metal oxide promoter for Fe catalysts,particularly ZrO_(2),have rarely been investigated.To plug this knowledge gap,a new Fe catalyst promoted with Na and partially reduced ZrO_(x)(Na-FeZrO_(x-9))was developed in this study;the catalyst helped produce C_(5+)hydrocarbons in remarkably high yield(26.3%at 360℃).In contrast to ZrO_(x)-free Fe-oxide,NaFeZrO_(x)-9 exhibited long-term stability for CO_(2)hydrogenation(750 h on-stream).The findings revealed multiple roles of ZrO_(x).Notably,ZrO_(x)decorated the Fe-oxide particles after calcination,thereby suppressing excess particle aggregation during the reaction,and acted as a"coke remover"to eliminate the carbon deposited on the catalyst surface.Additionally,oxygen vacancy(O_(v))sites in ZrO_(x)and electron transfer from ZrO_(x)to Fe sites facilitated the adsorption of CO_(2)at the Zr-Fe interface.
基金supported by the National Natural Science Foundation of China(No.21571062)the Program for Professor of Special Appointment(Eastern Scholar)at the Shanghai Institutions of Higher Learning to JGL,and the Fundamental Research Funds for the Central Universities(No.222201717003)。
文摘Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion.
文摘The efficient hydrogenolysis of esters to alkanes is the key protocol for producing advanced biofuels from renewable plant oils or fats.Due to the low reactivity of the carbonyl group in esters,a high reaction temperature(>250℃)is the prerequisite to ensure high conversion of esters.Here,we report a highly dispersed MoO_(x)-Ru/C bimetallic catalyst for the efficient hydrogenolysis of esters to alkanes under 150°C.The optimal catalyst exhibits>99%conversion of methyl stearate and 99%selectivity to diesel-range alkanes,reaching a high rate of up to 2.0 mmol gcat^(–1)h^(–1),5 times higher than that of Ru/C catalyst(MoO_(x)/C is inert).Integrated experimental and theoretical investigations attribute the high performance to the abundant MoO_(x)-Ru interfacial sites on the catalyst surface,which offers high activity for the C–O cleavage of esters.Furthermore,the dispersed MoO_(x)species significantly weaken the hydrocracking activity of the metallic Ru for C–C bonds,thus yielding alkane products without carbon loss.This study provides a facile and novel strategy for the design of high-performance heterogeneous catalysts for the hydrodeoxygenation of biomass-derived esters to alkane products.