Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effe...Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effects of CuO on NO+CO reaction were investigated, and the structure and reductive properties of various CuO/Ce x Ti 1- x O 2 were characterized by the methodologies of BET, TPR and XRD. The results show that different Ce/Ti mole ratios and calcination temperatures induce changes of structure and reductive properties of the Ce x Ti 1- x O 2 mixed oxides. When x =0.1~0.5, amorphous CeTi 2O 6 phase mainly forms at 650 ℃ compared to the formation of CeTi 2O 6 which crystallizes at 800 ℃. When x >0.6, some TiO 2 enters the CeO 2 lattice and a CeO 2 TiO 2 solid solution is formed. The activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 650 ℃ is largely affected by the x values, which is the highest when x =0.3, 0.4 and 0.9. The NO conversion reaches 70% at a reaction temperature of 150 ℃. By comparison, the x values have little effect on the activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 800 ℃ . There are strong interactions between CuO and CeTi 2O 6, i.e., formation of the CeTi 2O 6 phase shifts the CuO reduction peak temperature from 380 to 200 ℃, and CuO, in turn, shifts the CeTi 2O 6 reduction peak temperature from 600 to 300 ℃.展开更多
Using TiO2 and Ti0.5Zr0.5O2 as carriers, the CuO/TiO2 and CuO/Ti0.5Zr0.5O2 catalystswere prepared by the impregnation method with Cu(NO3)2 as active component. The catalyticactivities in NO+CO reaction were investigat...Using TiO2 and Ti0.5Zr0.5O2 as carriers, the CuO/TiO2 and CuO/Ti0.5Zr0.5O2 catalystswere prepared by the impregnation method with Cu(NO3)2 as active component. The catalyticactivities in NO+CO reaction were investigated using a microreactor-GC system, and structure andreducibility of catalysts were characterized by means of physical adsorption, TPR, XRD, NO-TPDtechnologies. It was found that the activity of CuO/Ti0.5Zr0.5O2 catalyst was higher than that ofCuO/TiO2, probably due to the large specific surface area of Ti0.5Zr0.5O2 that played an importantrole in NO+CO reaction.展开更多
Formaldehyde(HCHO) is a common indoor pollutant, long-term exposure to HCHO may harm human health. Its efficient removal at mild conditions is still challenging. The catalytic oxidation of HCHO molecules on a single a...Formaldehyde(HCHO) is a common indoor pollutant, long-term exposure to HCHO may harm human health. Its efficient removal at mild conditions is still challenging. The catalytic oxidation of HCHO molecules on a single atomic catalyst, Ti-decorated Ti3C2O2(Ti/Ti3C2O2) monolayer, is investigated by performing the first principles calculations in this work. It demonstrates that Ti atoms can be easily well dispersed at the form of single atom on Ti3C2O2 monolayer without aggregation. For HCHO catalytic oxidation, both Langmuir-Hinshelwood(LH) and Eley-Rideal(ER) mechanisms are considered. The results show that the step of HCHO dissociative adsorption on Ti/Ti3C2O2 with activated O2 can release high energy of 4.05 e V based on the ER mechanism, which can help to overcome the energy barrier(1.04 e V) of the subsequent reaction steps. The charge transfer from *OH group to CO molecule(dissociated from HCHO) not only promotes *OH group activation but also plays an important role in the H2 O generation along the ER mechanism. Therefore, HCHO can be oxidized easily on Ti/Ti3C2O2 monolayer, this work could provide significant guidance to develop effective non-noble metal catalysts for HCHO oxidation and broaden the applications of MXene-based materials.展开更多
A new method of determining the cumulate concentration of hydroxyl radicals in the TiO2/Ti photoelectrocatalytic(PEC) oxidation system was established by o-phenanthroline-Fe(Ⅱ)(Fe(phen)3^2+) spectrophotometr...A new method of determining the cumulate concentration of hydroxyl radicals in the TiO2/Ti photoelectrocatalytic(PEC) oxidation system was established by o-phenanthroline-Fe(Ⅱ)(Fe(phen)3^2+) spectrophotometry and using anion exchange membrane. Fe (phen)3^2+ can be oxidized to o-phenanthroline-Fe(Ⅲ)(Fe(phen)3^3+) by strong oxidization of hydroxyl radicals(·OH). Then the cumulate concentration of hydroxyl radicals can be calculated through determining the change of the Fe(phen)3^3+ absorbency at 509 nm. In addition, the research results showed the production rate of hydroxyl radicals was affected obviously by pH of solution, the cumulate concentration of hydroxyl radicals was the largest at nearby the initial pH 6.3 (isoelectric point), and the change direction of pH after illumination tended to nearby isoelectric point.展开更多
面向国家绿色低碳战略目标,变革化石资源合成氨技术路线变得尤为迫切,开发可再生能源制“绿氨”将成为合成氨领域未来的重要发展方向.将工业废水中的硝酸根(NO_(3)-)电催化还原为氨(NO_(3)RR),既可有效回收氨,又能消除硝酸根污染影响.然...面向国家绿色低碳战略目标,变革化石资源合成氨技术路线变得尤为迫切,开发可再生能源制“绿氨”将成为合成氨领域未来的重要发展方向.将工业废水中的硝酸根(NO_(3)-)电催化还原为氨(NO_(3)RR),既可有效回收氨,又能消除硝酸根污染影响.然而,NO_(3)RR涉及缓慢的八电子转移过程,含有多种反应中间体,其反应机理复杂不明.此外,水系电解液中存在的析氢竞争反应也为高效NO_(3)RR催化剂的开发设计带来了巨大的挑战.为突破高效催化剂的发展瓶颈,本文通过理论模拟,在低成本的催化剂上设计了高效的NO_(3)RR催化活性位点,并利用简单的制备策略合成了目标催化剂.同时,结合原位表征技术,阐明了NO_(3)RR的反应路径及催化机理.本文通过密度泛函理论(DFT)计算发现,Cu/TiO_(2)催化剂上的Cu-O-Ti-O_(v)结构具有较好的NO_(3)-还原活性,该结构不仅能够促进反应中间体NOx-的吸附和活化,还能有效抑制竞争析氢反应,从而降低NO_(3)RR的反应能垒.在该结构上,NO_(3)RR的反应路径为:NO_(3)^(*)→NO_(2)^(*)→HONO^(*)→NO^(*)→*NOH→*N→^(*)NH→*NH2→*NH_(3)→NH_(3).基于理论计算结果,分别采用浸渍法和尿素水解法制备了系列富含Cu-O-Ti-O_(v)结构的Cu/TiO_(2)催化剂.氮气等温吸附-脱附曲线、拉曼光谱(Raman)、电子顺磁共振波谱、X射线光电子能谱(XPS)和傅立叶红外光谱等结果发现,相比于采用浸渍法制备的系列Cu/TiO_(2)催化剂,采用尿素水解法制备的Cu/TiO_(2)(CT-U)催化剂具有更大的比表面积以及更多的Cu-O-Ti-O_(v)位点,说明尿素水解法可提高Cu颗粒在TiO_(2)载体表面的分散度,增强Cu颗粒与TiO_(2)载体之间的相互作用,提高Cu/TiO_(2)催化剂表面的Cu-O-Ti-O_(v)位点含量.将以上制备出的催化剂应用于催化NO_(3)RR中,结果表明,在-1.0 V vs.RHE还原电位下,CT-U催化剂上氨产率可达3046.5μg h^(-1) mgcat^(-1),高于大多数文献报道结果.循环稳定性测试结果表明,在Cu/TiO_(2)催化剂上构建Cu-O-Ti-O_(v)位点还能显著抑制电催化反应过程中Cu物种从Cu/TiO_(2)催化剂上溶出,从而显著增强催化剂的稳定性.此外,设计制备了不含氧空位的Cu/TiO_(2),TiO_(2)-x,Cu,Cu_(2)O以及CuO催化剂,并将其用于催化NO_(3)RR.结果发现,上述催化剂上的氨产率皆明显低于CT-U催化剂,说明Cu,Ti以及O_(v)构成的Cu-O-Ti-O_(v)结构具有较好的催化协同作用,从而显著提升了NO_(3)RR反应活性.最后,通过原位Raman及原位XPS表征检测反应中间体,验证了由DFT模拟出的NO_(3)RR反应路径.综上,通过在Cu/TiO_(2)催化剂上理论指导构建Cu-O-Ti-O_(v)活性位点,实现了NO_(3)RR性能的有效提升.Cu-O-Ti-O_(v)结构中的多位点协同作用不仅促进了NO_(x)-的吸附和活化,而且抑制了电催化过程中Cu物种从催化剂上的溶出,从而提高了催化剂的稳定性.本研究为设计高效稳定的NO_(3)RR催化剂提供了新思路.展开更多
The K2Ti4O9 whiskers were chosen for the catalyst carrier, TiO2/potassium titanate photocatalyst was prepared by Sol-gel method. The product was characterated by X-ray diffraction and SEM. EDS shows that, the main pec...The K2Ti4O9 whiskers were chosen for the catalyst carrier, TiO2/potassium titanate photocatalyst was prepared by Sol-gel method. The product was characterated by X-ray diffraction and SEM. EDS shows that, the main peck included Ti, O, and K in potassium titanate whisker. The main peak of K disappeared and the peaks of Ti, O stayed after whisker was covered. It directed that the surface of sample was covered by TiO2. XRD shows that diffraction peak appeared, which was corresponded to the peak of anatase TiO2. In the reaction device of photochemistry, using middle-pressure mercury lamp as illumination, rhodamine B as simulant pollutant, the photocatalytic performance of TiO2/potassium titanate was studied. Under the same conditions, the lower pH, the larger illuminance, the higher temperature, the greater aeration quantum and the lower initial concentration of rhodamine B, the higher decoloration rate was got. Under our experiment conditions: pH 6, the illuminance of 250W, the temperature of 313K, and the aeration quantum of 2.0L/min. When the concentration of rhodamine B was 8mg/L The photocatalyst of TiO2/potassium titanate was 0.01g/L. The decoloration rate of TiO2/potassium titanate dealt with the rhodamine B reach over 95% in 160min, and compare with TiO2, the decoloration rate of rhodamine B was improved 0.50~1.91 multiple. TiO2/potassium titanate can be used to treatment of dye wastewater.展开更多
文摘Ce x Ti 1- x O 2 mixed oxides of different mole ratios ( x =0, 0.1, 0.2~0.9, 1.0) were prepared by co precipitation of TiCl 4 with Ce(NO 3) 3 and then loaded with different amounts of CuO. The effects of CuO on NO+CO reaction were investigated, and the structure and reductive properties of various CuO/Ce x Ti 1- x O 2 were characterized by the methodologies of BET, TPR and XRD. The results show that different Ce/Ti mole ratios and calcination temperatures induce changes of structure and reductive properties of the Ce x Ti 1- x O 2 mixed oxides. When x =0.1~0.5, amorphous CeTi 2O 6 phase mainly forms at 650 ℃ compared to the formation of CeTi 2O 6 which crystallizes at 800 ℃. When x >0.6, some TiO 2 enters the CeO 2 lattice and a CeO 2 TiO 2 solid solution is formed. The activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 650 ℃ is largely affected by the x values, which is the highest when x =0.3, 0.4 and 0.9. The NO conversion reaches 70% at a reaction temperature of 150 ℃. By comparison, the x values have little effect on the activity of 6%CuO/Ce x Ti 1- x O 2 calcined at 800 ℃ . There are strong interactions between CuO and CeTi 2O 6, i.e., formation of the CeTi 2O 6 phase shifts the CuO reduction peak temperature from 380 to 200 ℃, and CuO, in turn, shifts the CeTi 2O 6 reduction peak temperature from 600 to 300 ℃.
文摘Using TiO2 and Ti0.5Zr0.5O2 as carriers, the CuO/TiO2 and CuO/Ti0.5Zr0.5O2 catalystswere prepared by the impregnation method with Cu(NO3)2 as active component. The catalyticactivities in NO+CO reaction were investigated using a microreactor-GC system, and structure andreducibility of catalysts were characterized by means of physical adsorption, TPR, XRD, NO-TPDtechnologies. It was found that the activity of CuO/Ti0.5Zr0.5O2 catalyst was higher than that ofCuO/TiO2, probably due to the large specific surface area of Ti0.5Zr0.5O2 that played an importantrole in NO+CO reaction.
文摘Formaldehyde(HCHO) is a common indoor pollutant, long-term exposure to HCHO may harm human health. Its efficient removal at mild conditions is still challenging. The catalytic oxidation of HCHO molecules on a single atomic catalyst, Ti-decorated Ti3C2O2(Ti/Ti3C2O2) monolayer, is investigated by performing the first principles calculations in this work. It demonstrates that Ti atoms can be easily well dispersed at the form of single atom on Ti3C2O2 monolayer without aggregation. For HCHO catalytic oxidation, both Langmuir-Hinshelwood(LH) and Eley-Rideal(ER) mechanisms are considered. The results show that the step of HCHO dissociative adsorption on Ti/Ti3C2O2 with activated O2 can release high energy of 4.05 e V based on the ER mechanism, which can help to overcome the energy barrier(1.04 e V) of the subsequent reaction steps. The charge transfer from *OH group to CO molecule(dissociated from HCHO) not only promotes *OH group activation but also plays an important role in the H2 O generation along the ER mechanism. Therefore, HCHO can be oxidized easily on Ti/Ti3C2O2 monolayer, this work could provide significant guidance to develop effective non-noble metal catalysts for HCHO oxidation and broaden the applications of MXene-based materials.
文摘A new method of determining the cumulate concentration of hydroxyl radicals in the TiO2/Ti photoelectrocatalytic(PEC) oxidation system was established by o-phenanthroline-Fe(Ⅱ)(Fe(phen)3^2+) spectrophotometry and using anion exchange membrane. Fe (phen)3^2+ can be oxidized to o-phenanthroline-Fe(Ⅲ)(Fe(phen)3^3+) by strong oxidization of hydroxyl radicals(·OH). Then the cumulate concentration of hydroxyl radicals can be calculated through determining the change of the Fe(phen)3^3+ absorbency at 509 nm. In addition, the research results showed the production rate of hydroxyl radicals was affected obviously by pH of solution, the cumulate concentration of hydroxyl radicals was the largest at nearby the initial pH 6.3 (isoelectric point), and the change direction of pH after illumination tended to nearby isoelectric point.
文摘面向国家绿色低碳战略目标,变革化石资源合成氨技术路线变得尤为迫切,开发可再生能源制“绿氨”将成为合成氨领域未来的重要发展方向.将工业废水中的硝酸根(NO_(3)-)电催化还原为氨(NO_(3)RR),既可有效回收氨,又能消除硝酸根污染影响.然而,NO_(3)RR涉及缓慢的八电子转移过程,含有多种反应中间体,其反应机理复杂不明.此外,水系电解液中存在的析氢竞争反应也为高效NO_(3)RR催化剂的开发设计带来了巨大的挑战.为突破高效催化剂的发展瓶颈,本文通过理论模拟,在低成本的催化剂上设计了高效的NO_(3)RR催化活性位点,并利用简单的制备策略合成了目标催化剂.同时,结合原位表征技术,阐明了NO_(3)RR的反应路径及催化机理.本文通过密度泛函理论(DFT)计算发现,Cu/TiO_(2)催化剂上的Cu-O-Ti-O_(v)结构具有较好的NO_(3)-还原活性,该结构不仅能够促进反应中间体NOx-的吸附和活化,还能有效抑制竞争析氢反应,从而降低NO_(3)RR的反应能垒.在该结构上,NO_(3)RR的反应路径为:NO_(3)^(*)→NO_(2)^(*)→HONO^(*)→NO^(*)→*NOH→*N→^(*)NH→*NH2→*NH_(3)→NH_(3).基于理论计算结果,分别采用浸渍法和尿素水解法制备了系列富含Cu-O-Ti-O_(v)结构的Cu/TiO_(2)催化剂.氮气等温吸附-脱附曲线、拉曼光谱(Raman)、电子顺磁共振波谱、X射线光电子能谱(XPS)和傅立叶红外光谱等结果发现,相比于采用浸渍法制备的系列Cu/TiO_(2)催化剂,采用尿素水解法制备的Cu/TiO_(2)(CT-U)催化剂具有更大的比表面积以及更多的Cu-O-Ti-O_(v)位点,说明尿素水解法可提高Cu颗粒在TiO_(2)载体表面的分散度,增强Cu颗粒与TiO_(2)载体之间的相互作用,提高Cu/TiO_(2)催化剂表面的Cu-O-Ti-O_(v)位点含量.将以上制备出的催化剂应用于催化NO_(3)RR中,结果表明,在-1.0 V vs.RHE还原电位下,CT-U催化剂上氨产率可达3046.5μg h^(-1) mgcat^(-1),高于大多数文献报道结果.循环稳定性测试结果表明,在Cu/TiO_(2)催化剂上构建Cu-O-Ti-O_(v)位点还能显著抑制电催化反应过程中Cu物种从Cu/TiO_(2)催化剂上溶出,从而显著增强催化剂的稳定性.此外,设计制备了不含氧空位的Cu/TiO_(2),TiO_(2)-x,Cu,Cu_(2)O以及CuO催化剂,并将其用于催化NO_(3)RR.结果发现,上述催化剂上的氨产率皆明显低于CT-U催化剂,说明Cu,Ti以及O_(v)构成的Cu-O-Ti-O_(v)结构具有较好的催化协同作用,从而显著提升了NO_(3)RR反应活性.最后,通过原位Raman及原位XPS表征检测反应中间体,验证了由DFT模拟出的NO_(3)RR反应路径.综上,通过在Cu/TiO_(2)催化剂上理论指导构建Cu-O-Ti-O_(v)活性位点,实现了NO_(3)RR性能的有效提升.Cu-O-Ti-O_(v)结构中的多位点协同作用不仅促进了NO_(x)-的吸附和活化,而且抑制了电催化过程中Cu物种从催化剂上的溶出,从而提高了催化剂的稳定性.本研究为设计高效稳定的NO_(3)RR催化剂提供了新思路.
基金The Innovation Foundation of the Ministry of Science and Technology of China (No. 03C26213200932)the Natural Science Foundation of Henan Province (No.0624720029).
文摘The K2Ti4O9 whiskers were chosen for the catalyst carrier, TiO2/potassium titanate photocatalyst was prepared by Sol-gel method. The product was characterated by X-ray diffraction and SEM. EDS shows that, the main peck included Ti, O, and K in potassium titanate whisker. The main peak of K disappeared and the peaks of Ti, O stayed after whisker was covered. It directed that the surface of sample was covered by TiO2. XRD shows that diffraction peak appeared, which was corresponded to the peak of anatase TiO2. In the reaction device of photochemistry, using middle-pressure mercury lamp as illumination, rhodamine B as simulant pollutant, the photocatalytic performance of TiO2/potassium titanate was studied. Under the same conditions, the lower pH, the larger illuminance, the higher temperature, the greater aeration quantum and the lower initial concentration of rhodamine B, the higher decoloration rate was got. Under our experiment conditions: pH 6, the illuminance of 250W, the temperature of 313K, and the aeration quantum of 2.0L/min. When the concentration of rhodamine B was 8mg/L The photocatalyst of TiO2/potassium titanate was 0.01g/L. The decoloration rate of TiO2/potassium titanate dealt with the rhodamine B reach over 95% in 160min, and compare with TiO2, the decoloration rate of rhodamine B was improved 0.50~1.91 multiple. TiO2/potassium titanate can be used to treatment of dye wastewater.
基金supported by the National Natural Science Foundation of China(21978325 and 22122807)Outstanding Youth Fund of the National Natural Science Foundation of China(22122807)+1 种基金Outstanding Youth Fund of Shandong Provincial Natural Science Foundation(ZR2020YQ17)Natural Science Foundation of Shandong Province(ZR2020KB006)。