Carbon supported Pt(Pt/C) electrocatalysts were prepared with glucose as protection agent and NaBH 4 as reductant.The Pt nanoparticles deposited on carbon support presented reduced size and well dispersity attribute...Carbon supported Pt(Pt/C) electrocatalysts were prepared with glucose as protection agent and NaBH 4 as reductant.The Pt nanoparticles deposited on carbon support presented reduced size and well dispersity attributed to the protection effect of glucose.Glucose absorbed on the particle surface was readily removed by water washing without leading to agglomeration of the Pt nanoparticles.The as-prepared Pt/C electrocatalysts showed improved mass activity for methanol electrooxidation compared to the catalyst prepared without glucose protection.The improved performance is attributed to the larger electrochemical active surface area thus increased active sites on the Pt/C elctrocatalysts prepared under the protection of glucose.展开更多
High-loading Pt/C catalysts play an important role in the fabrication of membrane electrode assemblies with thin catalytic layer,which enhance mass transport and maintain the balance of water and heat.Unfortunately,as...High-loading Pt/C catalysts play an important role in the fabrication of membrane electrode assemblies with thin catalytic layer,which enhance mass transport and maintain the balance of water and heat.Unfortunately,as the loading increases,the agglomeration and growth of Pt nanoparticles(NPs)occur,causing unsatisfactory performance.Here,we present an efficient method for preparing of highly dispersed and small-sized Pt/C catalysts with Pt loadings varying from 39.01 wt%to 66.48 wt%through the high-temperature shock technique.The high density and ultrafine(~2.5 nm)Pt NPs are successfully anchored onto Vulcan XC-72R carbon black without the use of additional capping agents or surfactants.The modified carbon supports enhance the affinity for Pt precursors,contributing to loading efficiencies of 95%or more,while also providing abundant sites for the nucleation and fixation of Pt NPs,thus preventing agglomeration.In the context of the hydrogen evolution reaction in acidic media,the as-synthesized high-loading Pt/C catalysts show remarkable activity and stability,outperforming the state-of-the-art commercial Pt/C.This is mainly because the combined effects of ultrasmall and uniform Pt NPs,optimized electronic structure of Pt site,superhydrophilicity and effective anchoring of Pt NPs.The polymer electrolyte membrane electrolyzer integrated with Pt60/OX72R and commercial IrO2 reaches 1 A cm^(-2)at 1.77 V and operates stably for 120 hours with a negligible voltage decay.This new strategy is fast,scalable and cost-effective for large-scale production of metal-supported catalysts,especially for the high-loading ones.展开更多
To efficiently diminish the Pt consumption while concurrently enhancing the anodic reaction kinetics,a straightforward synthesis for PtPdAg nanotrees(NTs)with exceedingly low Pt content is presented,utilizing the galv...To efficiently diminish the Pt consumption while concurrently enhancing the anodic reaction kinetics,a straightforward synthesis for PtPdAg nanotrees(NTs)with exceedingly low Pt content is presented,utilizing the galvanic replacement reaction between the initially prepared PdAg NTs and Pt ions.Due to the multilevel porous tree-like structure and the incorporation of low amounts of Pt,the electrocatalytic activity and stability of PtPdAg NTs are markedly enhanced,achieving 1.65 and 1.69 A·mg^(-1)Pt+Pd for the anodic reactions of formic acid oxidation(FAOR)and methanol oxidation(MOR)within DLFCs,surpassing the performance of PdAg NTs,as well as that of commercial Pt and Pd black.Density functional theory(DFT)calculations reveal that the addition of low amounts of Pt leads to an increase in the d-band center of PtPdAg NTs and lower the COads adsorption energy to-1.23 eV,enhancing the anti-CO toxicity properties optimally.This approach offers an effective means for designing low Pt catalysts as exceptional anodic electrocatalysts for direct liquid fuel cells.展开更多
Proton exchange membrane fuel cells(PEMFCs)constitute a promising avenue for environmentally friendly power generation.However,the reliance on unsustainable platinum-based electrocatalysts used at the electrodes poses...Proton exchange membrane fuel cells(PEMFCs)constitute a promising avenue for environmentally friendly power generation.However,the reliance on unsustainable platinum-based electrocatalysts used at the electrodes poses challenges to the commercial viability of PEMFCs.Non-platinum group metal(non-PGM)alternatives,like nitrogen-coordinated transition metals in atomic dispersion(M–N–C catalysts),show significant potential.This work presents a comparative study of two distinct sets of Fe–N–C materials,prepared by pyrolyzing hybrid composites of polyaniline(PANI)and iron(Ⅱ)chloride on a hard template.One set uses bipyridine(BPy)as an additional nitrogen source and iron ligand,offering an innovative approach.The findings reveal that the choice of pyrolysis temperature and atmosphere influences the catalyst properties.The use of ammonia in pyrolysis emerges as a crucial parameter for promoting atomic dispersion of iron,as well as increasing surface area and porosity.The optimal catalyst,prepared using BPy and ammonia,exhibits a half-wave potential of 0.834 V in 0.5 M H_(2)SO_(4)(catalyst loading of 0.6 mg cm^(-2)),a mass activity exceeding 3 A g^(-1)and high stability in acidic electrolyte,positioning it as a promising non-PGM structure in the field.展开更多
The efficient conversion of lignin into mono-cycloalkanes via both C–O and C–C bonds cleavage are attractive,but challenging due to the high C–C bond dissociation energy.Previous studies have demonstrated that NbO_...The efficient conversion of lignin into mono-cycloalkanes via both C–O and C–C bonds cleavage are attractive,but challenging due to the high C–C bond dissociation energy.Previous studies have demonstrated that NbO_(x)-based catalysts exhibited exceptional capabilities for C_(Ar)–C bond cleavage and broken the limitation of lignin monomers.In this work,we presented an economical multifunctional Pt-Nb/MOR catalyst that achieved an impressive monomer yield of 147%during the depolymerization and hydrodeoxygenation of lignin into mono-cycloalkanes.Reaction pathway studies showed that unlike traditional NbO_(x)-based catalytic system,bicyclohexane was an important intermediate in this system and followed the C_(sp3)–C_(sp3)cleavage pathway after complete cyclic-hydrogenation.Deep investigations demonstrated that the doping of Nb in Pt/MOR not only enhanced the activation of hydrogen by Pt,but also increased the acidity of MOR,both of these are favor for the hydrogenolytic cleavage of C_(sp3)–C_(sp3)bonds.This work provides a low-cost catalyst to obtain high-yield monomers from lignin under relatively mild conditions and would help to design catalysts with higher activity for the valorization of lignin.展开更多
Platinum nanoparticles supported on carbons(Pt/C,60%,mass fraction) electrocatalysts for direct methanol fuel cell(DMFC) were prepared by citrate-stabilized method with different reductants and carbon supports.The...Platinum nanoparticles supported on carbons(Pt/C,60%,mass fraction) electrocatalysts for direct methanol fuel cell(DMFC) were prepared by citrate-stabilized method with different reductants and carbon supports.The catalysts were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM) and cyclic voltammetry(CV).It is found that the size of Pt nanoparticles on carbon is controllable by citrate addition and reductant optimization,and the form of carbon support has a great influence on electrocatalytic activity of catalysts.The citrate-stabilized Pt nanoparticles supported on BP2000 carbon,which was reduced by formaldehyde,exhibit the best performance with about 2 nm in diameter and 66.46 m2/g(Pt) in electrocatalytic active surface(EAS) area.Test on single DMFC with 60%(mass fraction) Pt/BP2000 as cathode electrocatalyst showed maximum power density at 78.8 mW/cm2.展开更多
The main objective of this paper was to characterize the voltammetric profiles of the Pt/C,Pt/C-ATO,Pd/C and Pd/CATO electrocatalysts and study their catalytic activities for methane oxidation in an acidic electrolyte...The main objective of this paper was to characterize the voltammetric profiles of the Pt/C,Pt/C-ATO,Pd/C and Pd/CATO electrocatalysts and study their catalytic activities for methane oxidation in an acidic electrolyte at 25 ℃ and in a direct methane proton exchange membrane fuel cell at 80 ℃. The electrocatalysts prepared also were characterized by X-ray diffraction( XRD) and transmission electron microscopy( TEM). The diffractograms of the Pt/C and Pt/C-ATO electrocatalysts show four peaks associated with Pt face-centered cubic( fcc) structure,and the diffractograms of Pd/C and Pd/C-ATO show four peaks associated with Pd face-centered cubic( fcc) structure. For Pt/C-ATO and Pd/C-ATO,characteristic peaks of cassiterite( SnO_2) phase are observed,which are associated with Sb-doped SnO_2( ATO) used as supports for electrocatalysts. Cyclic voltammograms( CV) of all electrocatalysts after adsorption of methane show that there is a current increase during the anodic scan. However,this effect is more pronounced for Pt/C-ATO and Pd/C-ATO. This process is related to the oxidation of the adsorbed species through the bifunctional mechanism,where ATO provides oxygenated species for the oxidation of CO or HCO intermediates adsorbed in Pt or Pd sites. From in situ ATR-FTIR( Attenuated Total Reflectance-Fourier Transform Infrared) experiments for all electrocatalysts prepared the formation of HCO or CO intermediates are observed,which indicates the production of carbon dioxide. Polarization curves at 80 ℃in a direct methane fuel cell( DMEFC) show that Pd/C and Pt/C electroacatalysts have superior performance to Pd/C-ATO and Pt/C-ATO in methane oxidation.展开更多
The commercialization of proton exchange membrane fuel cells(PEMFCs)could provide a cleaner energy society in the near future.However,the sluggish reaction kinetics and harsh conditions of the oxygen reduction reactio...The commercialization of proton exchange membrane fuel cells(PEMFCs)could provide a cleaner energy society in the near future.However,the sluggish reaction kinetics and harsh conditions of the oxygen reduction reaction affect the durability and cost of PEMFCs.Most previous reports on Pt-based electrocatalyst designs have focused more on improving their activity;however,with the commercialization of PEMFCs,durability has received increasing attention.In-depth insight into the structural evolution of Pt-based electrocatalysts throughout their lifecycle can contribute to further optimization of their activity and durability.The development of in situ electron microscopy and other in situ techniques has promoted the elucidation of the evolution mechanism.This mini review highlights recent advances in the structural evolution of Pt-based electrocatalysts.The mechanisms are adequately discussed,and some methods to inhibit or exploit the structural evolution of the catalysts are also briefly reviewed.展开更多
PtRuIn/C electrocatalysts( 20% metal loading by weight) were prepared by sodium borohydride reduction process using H_2PtCl6·6H_2O,RuCl_3·xH_2O and InCl_3·xH_2O as metal sources,borohydride as reducing ...PtRuIn/C electrocatalysts( 20% metal loading by weight) were prepared by sodium borohydride reduction process using H_2PtCl6·6H_2O,RuCl_3·xH_2O and InCl_3·xH_2O as metal sources,borohydride as reducing agent and Carbon Vulcan XC72 as support. The synthetized PtRuIn/C electrocatalysts were characterized by X-ray diffraction( XRD),energy dispersive analysis( EDX),transmission electron microscopy( TEM),cyclic voltammetry( CV),chronoamperommetry( CA) and polarization curves in alkaline and acidic electrolytes( single cell experiments). The XRD patterns showPtpeaks are attributed to the face-centered cubic( fcc) structure,and a shift of Pt( fcc) peaks indicates that Ru or In is incorporated into Ptlattice. TEMmicrographs showmetal nanoparticles with an average nanoparticle size between 2.7 and 3.5 nm. Methanol oxidation in acidic and alkaline electrolytes was investigated at room temperature,by CV and CA. PtRu/C( 50 ∶ 50) shows the highest activity among all electrocatalysts in study considering methanol oxidation for acidic and alkaline electrolyte. Polarization curves at 80 ℃ showPtRuIn/C( 50 ∶ 25 ∶ 25)with superior performance for methanol oxidation,when compared to Pt/C,PtIn/C and PtRu/C for both electrolytes. The best performance obtained by PtRuIn/C( 50 ∶ 25 ∶ 25) in real conditions could be associated with the increased kinetics reaction and/or with the occurrence simultaneously of the bifunctional mechanism and electronic effect resulting from the presence of Ptalloy.展开更多
Although carbon-supported platinum(Pt/C) is still considered the most active electrocatalyst for hydrogen evolution reaction(HER) and oxygen reduction reaction(ORR), its applications in metal–air batteries as a catho...Although carbon-supported platinum(Pt/C) is still considered the most active electrocatalyst for hydrogen evolution reaction(HER) and oxygen reduction reaction(ORR), its applications in metal–air batteries as a cathode catalyst, or for oxygen generation via water splitting electrolysis as an anode catalyst is mainly constrained by the insufficient kinetic activity and stability in the oxygen evolution reaction(OER). Here, MOF-253-derived nitrogen-doped carbon(N/C)-confined Pt single nanocrystals(Pt@N/C) have been synthesized and shown to be efficient catalysts for the OER. Even with low Pt mass loading of 6.1 wt%(Pt@N/C-10), the catalyst exhibits greatly improved activity and long-time stability as an efficient OER catalyst. Such high catalytic performance is attributed to the core-shell structure relationship, in which the active N-doped-C shell not only provides a protective shield to avoid rapid Pt nanocrystal oxidation at high potentials and inhibits the Pt migration and agglomeration, but also improves the conductivity and charge transfer kinetics.展开更多
Because of its good stability and conductivity,titanium nitride(TiN)is considered to be a very promising alternative support for Pt catalyst;however,the preparation of TiN supports is still challenging.In this work,at...Because of its good stability and conductivity,titanium nitride(TiN)is considered to be a very promising alternative support for Pt catalyst;however,the preparation of TiN supports is still challenging.In this work,atomic layer deposition was facilely adopted to fabricate TiN nanoparticles onto carbon nanotubes(CNTs),and then the prepared TiN/CNTs hybrid was used as a support of Pt catalyst.The resulting TiN/CNTs-supported Pt nanoparticles(Pt@TiN/CNTs)nanocomposite showed higher catalytic activity and long-term stability toward the oxygen reduction reaction than the commercial Pt/C,which should be due to the high conductivity and high stability of TiN support,as well as the favorable Pt-TiN strong interaction.展开更多
PtNi/C nanoparticles with different atomic ratios of Pt/Ni were produced in pulse microwave assisted polyol process. Transmission electron microscopy(TEM) images show uniform morphology. X-ray diffraction(XRD) pattern...PtNi/C nanoparticles with different atomic ratios of Pt/Ni were produced in pulse microwave assisted polyol process. Transmission electron microscopy(TEM) images show uniform morphology. X-ray diffraction(XRD) pattern plus energy dispersive X-ray(EDX) spectroscopy suggests pure composition. Cyclic voltammogram study reveals that PtNi/C nanoparticles synthesized in pulse microwave assisted polyol process have better catalytic activity for the oxidation of methanol to carbon dioxide than those synthesized in continuous process.展开更多
基金Supported by the National Innovative Research Program for Undergraduates,China(No.2010A33039)the Science and Technology Development Program of Jilin Province,China(No.20100420)
文摘Carbon supported Pt(Pt/C) electrocatalysts were prepared with glucose as protection agent and NaBH 4 as reductant.The Pt nanoparticles deposited on carbon support presented reduced size and well dispersity attributed to the protection effect of glucose.Glucose absorbed on the particle surface was readily removed by water washing without leading to agglomeration of the Pt nanoparticles.The as-prepared Pt/C electrocatalysts showed improved mass activity for methanol electrooxidation compared to the catalyst prepared without glucose protection.The improved performance is attributed to the larger electrochemical active surface area thus increased active sites on the Pt/C elctrocatalysts prepared under the protection of glucose.
文摘High-loading Pt/C catalysts play an important role in the fabrication of membrane electrode assemblies with thin catalytic layer,which enhance mass transport and maintain the balance of water and heat.Unfortunately,as the loading increases,the agglomeration and growth of Pt nanoparticles(NPs)occur,causing unsatisfactory performance.Here,we present an efficient method for preparing of highly dispersed and small-sized Pt/C catalysts with Pt loadings varying from 39.01 wt%to 66.48 wt%through the high-temperature shock technique.The high density and ultrafine(~2.5 nm)Pt NPs are successfully anchored onto Vulcan XC-72R carbon black without the use of additional capping agents or surfactants.The modified carbon supports enhance the affinity for Pt precursors,contributing to loading efficiencies of 95%or more,while also providing abundant sites for the nucleation and fixation of Pt NPs,thus preventing agglomeration.In the context of the hydrogen evolution reaction in acidic media,the as-synthesized high-loading Pt/C catalysts show remarkable activity and stability,outperforming the state-of-the-art commercial Pt/C.This is mainly because the combined effects of ultrasmall and uniform Pt NPs,optimized electronic structure of Pt site,superhydrophilicity and effective anchoring of Pt NPs.The polymer electrolyte membrane electrolyzer integrated with Pt60/OX72R and commercial IrO2 reaches 1 A cm^(-2)at 1.77 V and operates stably for 120 hours with a negligible voltage decay.This new strategy is fast,scalable and cost-effective for large-scale production of metal-supported catalysts,especially for the high-loading ones.
基金supported by the National Natural Science Foundation of China(Nos.22202104,22279062,22232004 and 22072067)the Natural Science Foundation of Jiangsu Province(No.BK20220933)Shuangchuang Doctor Plan of Jiangsu Province(No.JSSCBS20220273).
文摘To efficiently diminish the Pt consumption while concurrently enhancing the anodic reaction kinetics,a straightforward synthesis for PtPdAg nanotrees(NTs)with exceedingly low Pt content is presented,utilizing the galvanic replacement reaction between the initially prepared PdAg NTs and Pt ions.Due to the multilevel porous tree-like structure and the incorporation of low amounts of Pt,the electrocatalytic activity and stability of PtPdAg NTs are markedly enhanced,achieving 1.65 and 1.69 A·mg^(-1)Pt+Pd for the anodic reactions of formic acid oxidation(FAOR)and methanol oxidation(MOR)within DLFCs,surpassing the performance of PdAg NTs,as well as that of commercial Pt and Pd black.Density functional theory(DFT)calculations reveal that the addition of low amounts of Pt leads to an increase in the d-band center of PtPdAg NTs and lower the COads adsorption energy to-1.23 eV,enhancing the anti-CO toxicity properties optimally.This approach offers an effective means for designing low Pt catalysts as exceptional anodic electrocatalysts for direct liquid fuel cells.
基金funding from the Hellenic Foundation for Research and Innovation(HFRI)under grant agreement No 3655.
文摘Proton exchange membrane fuel cells(PEMFCs)constitute a promising avenue for environmentally friendly power generation.However,the reliance on unsustainable platinum-based electrocatalysts used at the electrodes poses challenges to the commercial viability of PEMFCs.Non-platinum group metal(non-PGM)alternatives,like nitrogen-coordinated transition metals in atomic dispersion(M–N–C catalysts),show significant potential.This work presents a comparative study of two distinct sets of Fe–N–C materials,prepared by pyrolyzing hybrid composites of polyaniline(PANI)and iron(Ⅱ)chloride on a hard template.One set uses bipyridine(BPy)as an additional nitrogen source and iron ligand,offering an innovative approach.The findings reveal that the choice of pyrolysis temperature and atmosphere influences the catalyst properties.The use of ammonia in pyrolysis emerges as a crucial parameter for promoting atomic dispersion of iron,as well as increasing surface area and porosity.The optimal catalyst,prepared using BPy and ammonia,exhibits a half-wave potential of 0.834 V in 0.5 M H_(2)SO_(4)(catalyst loading of 0.6 mg cm^(-2)),a mass activity exceeding 3 A g^(-1)and high stability in acidic electrolyte,positioning it as a promising non-PGM structure in the field.
文摘The efficient conversion of lignin into mono-cycloalkanes via both C–O and C–C bonds cleavage are attractive,but challenging due to the high C–C bond dissociation energy.Previous studies have demonstrated that NbO_(x)-based catalysts exhibited exceptional capabilities for C_(Ar)–C bond cleavage and broken the limitation of lignin monomers.In this work,we presented an economical multifunctional Pt-Nb/MOR catalyst that achieved an impressive monomer yield of 147%during the depolymerization and hydrodeoxygenation of lignin into mono-cycloalkanes.Reaction pathway studies showed that unlike traditional NbO_(x)-based catalytic system,bicyclohexane was an important intermediate in this system and followed the C_(sp3)–C_(sp3)cleavage pathway after complete cyclic-hydrogenation.Deep investigations demonstrated that the doping of Nb in Pt/MOR not only enhanced the activation of hydrogen by Pt,but also increased the acidity of MOR,both of these are favor for the hydrogenolytic cleavage of C_(sp3)–C_(sp3)bonds.This work provides a low-cost catalyst to obtain high-yield monomers from lignin under relatively mild conditions and would help to design catalysts with higher activity for the valorization of lignin.
基金Project(50573041)supported by the National Natural Science Foundation of China
文摘Platinum nanoparticles supported on carbons(Pt/C,60%,mass fraction) electrocatalysts for direct methanol fuel cell(DMFC) were prepared by citrate-stabilized method with different reductants and carbon supports.The catalysts were characterized by X-ray diffraction(XRD),transmission electron microscopy(TEM) and cyclic voltammetry(CV).It is found that the size of Pt nanoparticles on carbon is controllable by citrate addition and reductant optimization,and the form of carbon support has a great influence on electrocatalytic activity of catalysts.The citrate-stabilized Pt nanoparticles supported on BP2000 carbon,which was reduced by formaldehyde,exhibit the best performance with about 2 nm in diameter and 66.46 m2/g(Pt) in electrocatalytic active surface(EAS) area.Test on single DMFC with 60%(mass fraction) Pt/BP2000 as cathode electrocatalyst showed maximum power density at 78.8 mW/cm2.
基金The project was supported by the FAPESP(2014/09087-4,2014/50279-4).
文摘The main objective of this paper was to characterize the voltammetric profiles of the Pt/C,Pt/C-ATO,Pd/C and Pd/CATO electrocatalysts and study their catalytic activities for methane oxidation in an acidic electrolyte at 25 ℃ and in a direct methane proton exchange membrane fuel cell at 80 ℃. The electrocatalysts prepared also were characterized by X-ray diffraction( XRD) and transmission electron microscopy( TEM). The diffractograms of the Pt/C and Pt/C-ATO electrocatalysts show four peaks associated with Pt face-centered cubic( fcc) structure,and the diffractograms of Pd/C and Pd/C-ATO show four peaks associated with Pd face-centered cubic( fcc) structure. For Pt/C-ATO and Pd/C-ATO,characteristic peaks of cassiterite( SnO_2) phase are observed,which are associated with Sb-doped SnO_2( ATO) used as supports for electrocatalysts. Cyclic voltammograms( CV) of all electrocatalysts after adsorption of methane show that there is a current increase during the anodic scan. However,this effect is more pronounced for Pt/C-ATO and Pd/C-ATO. This process is related to the oxidation of the adsorbed species through the bifunctional mechanism,where ATO provides oxygenated species for the oxidation of CO or HCO intermediates adsorbed in Pt or Pd sites. From in situ ATR-FTIR( Attenuated Total Reflectance-Fourier Transform Infrared) experiments for all electrocatalysts prepared the formation of HCO or CO intermediates are observed,which indicates the production of carbon dioxide. Polarization curves at 80 ℃in a direct methane fuel cell( DMEFC) show that Pd/C and Pt/C electroacatalysts have superior performance to Pd/C-ATO and Pt/C-ATO in methane oxidation.
文摘The commercialization of proton exchange membrane fuel cells(PEMFCs)could provide a cleaner energy society in the near future.However,the sluggish reaction kinetics and harsh conditions of the oxygen reduction reaction affect the durability and cost of PEMFCs.Most previous reports on Pt-based electrocatalyst designs have focused more on improving their activity;however,with the commercialization of PEMFCs,durability has received increasing attention.In-depth insight into the structural evolution of Pt-based electrocatalysts throughout their lifecycle can contribute to further optimization of their activity and durability.The development of in situ electron microscopy and other in situ techniques has promoted the elucidation of the evolution mechanism.This mini review highlights recent advances in the structural evolution of Pt-based electrocatalysts.The mechanisms are adequately discussed,and some methods to inhibit or exploit the structural evolution of the catalysts are also briefly reviewed.
文摘PtRuIn/C electrocatalysts( 20% metal loading by weight) were prepared by sodium borohydride reduction process using H_2PtCl6·6H_2O,RuCl_3·xH_2O and InCl_3·xH_2O as metal sources,borohydride as reducing agent and Carbon Vulcan XC72 as support. The synthetized PtRuIn/C electrocatalysts were characterized by X-ray diffraction( XRD),energy dispersive analysis( EDX),transmission electron microscopy( TEM),cyclic voltammetry( CV),chronoamperommetry( CA) and polarization curves in alkaline and acidic electrolytes( single cell experiments). The XRD patterns showPtpeaks are attributed to the face-centered cubic( fcc) structure,and a shift of Pt( fcc) peaks indicates that Ru or In is incorporated into Ptlattice. TEMmicrographs showmetal nanoparticles with an average nanoparticle size between 2.7 and 3.5 nm. Methanol oxidation in acidic and alkaline electrolytes was investigated at room temperature,by CV and CA. PtRu/C( 50 ∶ 50) shows the highest activity among all electrocatalysts in study considering methanol oxidation for acidic and alkaline electrolyte. Polarization curves at 80 ℃ showPtRuIn/C( 50 ∶ 25 ∶ 25)with superior performance for methanol oxidation,when compared to Pt/C,PtIn/C and PtRu/C for both electrolytes. The best performance obtained by PtRuIn/C( 50 ∶ 25 ∶ 25) in real conditions could be associated with the increased kinetics reaction and/or with the occurrence simultaneously of the bifunctional mechanism and electronic effect resulting from the presence of Ptalloy.
文摘Although carbon-supported platinum(Pt/C) is still considered the most active electrocatalyst for hydrogen evolution reaction(HER) and oxygen reduction reaction(ORR), its applications in metal–air batteries as a cathode catalyst, or for oxygen generation via water splitting electrolysis as an anode catalyst is mainly constrained by the insufficient kinetic activity and stability in the oxygen evolution reaction(OER). Here, MOF-253-derived nitrogen-doped carbon(N/C)-confined Pt single nanocrystals(Pt@N/C) have been synthesized and shown to be efficient catalysts for the OER. Even with low Pt mass loading of 6.1 wt%(Pt@N/C-10), the catalyst exhibits greatly improved activity and long-time stability as an efficient OER catalyst. Such high catalytic performance is attributed to the core-shell structure relationship, in which the active N-doped-C shell not only provides a protective shield to avoid rapid Pt nanocrystal oxidation at high potentials and inhibits the Pt migration and agglomeration, but also improves the conductivity and charge transfer kinetics.
基金financially supported by the Shandong Provincial Natural Science Foundation(Nos.ZR2016JL007 and ZR2014JL010)the National Natural Science Foundation of China(No.21775078)。
文摘Because of its good stability and conductivity,titanium nitride(TiN)is considered to be a very promising alternative support for Pt catalyst;however,the preparation of TiN supports is still challenging.In this work,atomic layer deposition was facilely adopted to fabricate TiN nanoparticles onto carbon nanotubes(CNTs),and then the prepared TiN/CNTs hybrid was used as a support of Pt catalyst.The resulting TiN/CNTs-supported Pt nanoparticles(Pt@TiN/CNTs)nanocomposite showed higher catalytic activity and long-term stability toward the oxygen reduction reaction than the commercial Pt/C,which should be due to the high conductivity and high stability of TiN support,as well as the favorable Pt-TiN strong interaction.
文摘PtNi/C nanoparticles with different atomic ratios of Pt/Ni were produced in pulse microwave assisted polyol process. Transmission electron microscopy(TEM) images show uniform morphology. X-ray diffraction(XRD) pattern plus energy dispersive X-ray(EDX) spectroscopy suggests pure composition. Cyclic voltammogram study reveals that PtNi/C nanoparticles synthesized in pulse microwave assisted polyol process have better catalytic activity for the oxidation of methanol to carbon dioxide than those synthesized in continuous process.