In this paper,we studyλ-biharmonic hypersurfaces M_(r)^(5) of 6-dimensional pseudo Riemannian space form N_(p)^(6)(c)with the indexs 0≤p≤6,r=p−1 or p,and constant curvature c.It was proved that if the shape operato...In this paper,we studyλ-biharmonic hypersurfaces M_(r)^(5) of 6-dimensional pseudo Riemannian space form N_(p)^(6)(c)with the indexs 0≤p≤6,r=p−1 or p,and constant curvature c.It was proved that if the shape operator of M_(r)^(5) is diagonalizable,then the mean curvature is a constant.As an application,we find some types of biharmonic hypersurfaces of N_(p)^(6)(c)are minimal.展开更多
Abstract: This paper concerns space-like submanifolds in a pseudo-Riemannianspace-time Sp^m+p∪→Ep^m+p+1 (P ≥ 1), and proves that connected compact maximalsuace-like submanifolds in a pseudo-Riemannian spaceti...Abstract: This paper concerns space-like submanifolds in a pseudo-Riemannianspace-time Sp^m+p∪→Ep^m+p+1 (P ≥ 1), and proves that connected compact maximalsuace-like submanifolds in a pseudo-Riemannian spacetime Sp^m+p∪→Ep^m+p+1 (P ≥ 1) must be totally umbilical, and also totally geodesic. Particularly, when p = 1, our result is just Montiel's in case of H = 0.展开更多
For a 4-dimensional Riemannian manifold(M,g),Atiyah et al.in[Proc.Roy.Soc.London Ser.A,1978,362(1711):425-461]used the kernel of twistor operator D to construct a distribution V(D)on the dual bundle of the anti-self-d...For a 4-dimensional Riemannian manifold(M,g),Atiyah et al.in[Proc.Roy.Soc.London Ser.A,1978,362(1711):425-461]used the kernel of twistor operator D to construct a distribution V(D)on the dual bundle of the anti-self-dual spinor bundle on M.Now V(D)forms an almost complex structure on dual bundle.Moreover,they showed that this almost complex structure is integrable if and only if M is self-dual.In this paper,we extend the construction of V(D)to 4-dimensional pseudo-Riemannian manifolds of signature(2,2).And we give a new method to prove the curvature condition in the integrability condition of V(D).Using this new method,we study the integrability conditions and structure of V(D)when the signature of g is(2,2).展开更多
We first establish a integral inequality for compact maximal space-like subman ifolds in pseudo-Riemannian manifolds Np(n+p). Then, we investigate compact space-like sub manifolds and hupersurfaces with parallel secon...We first establish a integral inequality for compact maximal space-like subman ifolds in pseudo-Riemannian manifolds Np(n+p). Then, we investigate compact space-like sub manifolds and hupersurfaces with parallel second fundamental form in Np(n+p) and some other ambient spaces. We obtain some distribution theorems for the square norm of the second fundamental form.展开更多
基金Supported by National Natural Science Foundation of China(12161078)Foundation for Innovative Fundamental Research Group Project of Gansu Province(24JRRA778)Project of Northwest Normal University(20240010)。
文摘In this paper,we studyλ-biharmonic hypersurfaces M_(r)^(5) of 6-dimensional pseudo Riemannian space form N_(p)^(6)(c)with the indexs 0≤p≤6,r=p−1 or p,and constant curvature c.It was proved that if the shape operator of M_(r)^(5) is diagonalizable,then the mean curvature is a constant.As an application,we find some types of biharmonic hypersurfaces of N_(p)^(6)(c)are minimal.
文摘Abstract: This paper concerns space-like submanifolds in a pseudo-Riemannianspace-time Sp^m+p∪→Ep^m+p+1 (P ≥ 1), and proves that connected compact maximalsuace-like submanifolds in a pseudo-Riemannian spacetime Sp^m+p∪→Ep^m+p+1 (P ≥ 1) must be totally umbilical, and also totally geodesic. Particularly, when p = 1, our result is just Montiel's in case of H = 0.
基金Supported by the Project of Stable Support for Youth Team in Basic Research Field,CAS(No.YSBR-001)。
文摘For a 4-dimensional Riemannian manifold(M,g),Atiyah et al.in[Proc.Roy.Soc.London Ser.A,1978,362(1711):425-461]used the kernel of twistor operator D to construct a distribution V(D)on the dual bundle of the anti-self-dual spinor bundle on M.Now V(D)forms an almost complex structure on dual bundle.Moreover,they showed that this almost complex structure is integrable if and only if M is self-dual.In this paper,we extend the construction of V(D)to 4-dimensional pseudo-Riemannian manifolds of signature(2,2).And we give a new method to prove the curvature condition in the integrability condition of V(D).Using this new method,we study the integrability conditions and structure of V(D)when the signature of g is(2,2).
文摘We first establish a integral inequality for compact maximal space-like subman ifolds in pseudo-Riemannian manifolds Np(n+p). Then, we investigate compact space-like sub manifolds and hupersurfaces with parallel second fundamental form in Np(n+p) and some other ambient spaces. We obtain some distribution theorems for the square norm of the second fundamental form.