期刊文献+
共找到1,739篇文章
< 1 2 87 >
每页显示 20 50 100
Boosting high-performance in Zr-rich side protonic solid oxide electrolysis cells by optimizing functional interlayer 被引量:1
1
作者 Chunmei Tang Ning Wang +3 位作者 Sho Kitano Hiroki Habazaki Yoshitaka Aoki Siyu Ye 《Green Energy & Environment》 SCIE EI CAS 2025年第1期150-160,共11页
Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SO... Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability. 展开更多
关键词 Functional interlayer Zr-rich side electrolyte Protonic solid oxide electrolysis cells Current density Faradaic efficiency
在线阅读 下载PDF
Confined proton transport in water-containing layered manganese oxide electrodes 被引量:1
2
作者 Wenwei Cai Feng Pan Shunning Li 《Chinese Journal of Structural Chemistry》 2025年第5期15-18,共4页
Understanding the proton dynamic behavior in inorganic materials has long been a topic of intense fascination[1],especially in the field of electrochemical energy storage[2].One of the examples is the research of prot... Understanding the proton dynamic behavior in inorganic materials has long been a topic of intense fascination[1],especially in the field of electrochemical energy storage[2].One of the examples is the research of proton transport in transition metal oxides,which dates back to 1971[3]when RuO_(2) was discovered to be capable of storing protons via reversible redox reactions[4].In aqueous electrolytes,the thin film RuO_(2) electrode exhibits a surface pseudocapacitive behavior[5],which could be modified by the structural water in its hydrated form due to the facile Grotthuss hopping mode of protons along the established hydrogen bonds inside the bulk phase[6].Soon later,Goodenough et al.reported the capacitor-like behavior of amorphous MnO_(2)·xH_(2)O electrode in an aqueous KCl electrolyte[7],and further studies on the hydrated MnO_(2) electrodes prepared by sol-gel processes have soon discovered that the intercalation of protons from aqueous electrolytes plays an indispensable role in the charge storage mechanism[8].In recent years,the research interest on rechargeable aqueous batteries has fueled the renaissance of mechanistic study of proton transport in transition metal oxides[9],which can operate as cathodes or anodes via a topotactic insertion mechanism similar to that in Li-ion batteries[10].However,due to the challenges for experimental detection of local chemical environments of the inserted protons,a comprehensive understanding of proton dynamic behavior in these electrodes remains largely lacking. 展开更多
关键词 transition metal oxideswhich storing protons inorganic materials thin film ruo proton transport reversible redox reactions understanding proton dynamic behavior electrochemical energy storage one
原文传递
Precision-Engineered Construction of Proton-Conducting Metal-Organic Frameworks 被引量:1
3
作者 Liyu Zhu Hongbin Yang +2 位作者 Ting Xu Feng Shen Chuanling Si 《Nano-Micro Letters》 2025年第4期230-274,共45页
Proton-conducting materials have attracted considerable interest because of their extensive application in energy storage and conversion devices.Among them,metal-organic frameworks(MOFs)present tremendous development ... Proton-conducting materials have attracted considerable interest because of their extensive application in energy storage and conversion devices.Among them,metal-organic frameworks(MOFs)present tremendous development potential and possibilities for constructing novel advanced proton conductors due to their special advantages in crystallinity,designability,and porosity.In particular,several special design strategies for the structure of MOFs have opened new doors for the advancement of MOF proton conductors,such as charged network construction,ligand functionalization,metal-center manipulation,defective engineering,vip molecule incorporation,and pore-space manipulation.With the implementation of these strategies,proton-conducting MOFs have developed significantly and profoundly within the last decade.Therefore,in this review,we critically discuss and analyze the fundamental principles,design strategies,and implementation methods targeted at improving the proton conductivity of MOFs through representative examples.Besides,the structural features,the proton conduction mechanism and the behavior of MOFs are discussed thoroughly and meticulously.Future endeavors are also proposed to address the challenges of proton-conducting MOFs in practical research.We sincerely expect that this review will bring guidance and inspiration for the design of proton-conducting MOFs and further motivate the research enthusiasm for novel proton-conducting materials. 展开更多
关键词 MOFS Proton conduction Porous materials Fuel cells
在线阅读 下载PDF
Role of Helicobacter pylori infection and the risk of cholelithiasis 被引量:1
4
作者 Nicolò Fabbri Salvatore Greco +3 位作者 Antonio Pesce Francesco Virgilio Danila Romeo Carlo V Feo 《World Journal of Gastroenterology》 2025年第8期152-154,共3页
This article aims to deepen the understanding of the role of Helicobacter pylori(H.pylori)infection in the development of cholelithiasis,initiated by the article by Yao et al,who investigated the potential link betwee... This article aims to deepen the understanding of the role of Helicobacter pylori(H.pylori)infection in the development of cholelithiasis,initiated by the article by Yao et al,who investigated the potential link between H.pylori infection and the development of cholelithiasis through a multicenter retrospective study on an Asian population of over 70000 participants.They also performed a compre-hensive analysis of previously published studies on H.pylori and cholelithiasis,finding a positive association therein[odds ratio(OR)=1.103,P=0.049].Patients positive for H.pylori also had lower levels of total and direct bilirubin,but higher levels of total cholesterol and low-density lipoprotein cholesterol compared to uninfected patients(P<0.05).Cohort studies have confirmed that H.pylori is a risk factor for cholelithiasis(P<0.0001),and aggregate analyses of case-control and cross-sectional studies have shown a positive association between H.pylori and cholelithiasis in Asia(OR=1.599,P=0.034),but not in Europe(OR=1.277,P=0.246).Moreover,H.pylori appears to be related to a higher ratio of choledocho-lithiasis/cholecystolithiasis(OR=3.321,P=0.033).The authors conclude that H.pylori infection is positively correlated with cholelithiasis,particularly with the choledocholithiasis phenotype,especially in Asia,and it is potentially related to bilirubin and cholesterol metabolism. 展开更多
关键词 Helicobacter pylori Helicobacter pylori infection CHOLELITHIASIS Proton pump inhibitors CHOLEDOCHOLITHIASIS
暂未订购
Nanofiber-based polymer electrolyte membranes for fuel cells 被引量:1
5
作者 Ning Liu Shuguang Bi +5 位作者 Yi Zhang Ying Ou Chunli Gong Jianhua Ran Yihuang Chen Yingkui Yang 《Carbon Energy》 2025年第4期1-35,共35页
Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longr... Developing low-cost and high-performance nanofiber-based polyelectrolyte membranes for fuel cell applications is a promising solution to energy depletion.Due to the high specific surface area and one-dimensional longrange continuous structure of the nanofiber,ion-charged groups can be induced to form long-range continuous ion transfer channels in the nanofiber composite membrane,significantly increasing the ion conductivity of the membrane.This review stands apart from previous endeavors by offering a comprehensive overview of the strategies employed over the past decade in utilizing both electrospun and natural nanofibers as key components of proton exchange membranes and anion exchange membranes for fuel cells.Electrospun nanofibers are categorized based on their material properties into two primary groups:(1)ionomer nanofibers,inherently endowed with the ability to conduct H+(such as perfluorosulfonic acid or sulfonated poly(ether ether ketone))or OH-(e.g.,FAA-3),and(2)nonionic polymer nanofibers,comprising inert polymers like polyvinylidene difluoride,polytetrafluoroethylene,and polyacrylonitrile.Notably,the latter often necessitates surface modifications to impart ion transport channels,given their inherent proton inertness.Furthermore,this review delves into the recent progress made with three natural nanofibers derived from biodegradable cellulose—cellulose nanocrystals,cellulose nanofibers,and bacterial nanofibers—as crucial elements in polyelectrolyte membranes.The effect of the physical structure of such nanofibers on polyelectrolyte membrane properties is also briefly discussed.Lastly,the review emphasizes the challenges and outlines potential solutions for future research in the field of nanofiber-based polyelectrolyte membranes,aiming to propel the development of high-performance polymer electrolyte fuel cells. 展开更多
关键词 anion exchange membranes fuel cells NANOFIBERS proton exchange membranes
在线阅读 下载PDF
Proton exchange membrane-based electrocatalytic systems for hydrogen production 被引量:1
6
作者 Yangyang Zhou Hongjing Zhong +6 位作者 Shanhu Chen Guobin Wen Liang Shen Yanyong Wang Ru Chen Li Tao Shuangyin Wang 《Carbon Energy》 2025年第1期292-311,共20页
Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promisi... Hydrogen energy from electrocatalysis driven by sustainable energy has emerged as a solution against the background of carbon neutrality.Proton exchange membrane(PEM)-based electrocatalytic systems represent a promising technology for hydrogen production,which is equipped to combine efficiently with intermittent electricity from renewable energy sources.In this review,PEM-based electrocatalytic systems for H2 production are summarized systematically from low to high operating temperature systems.When the operating temperature is below 130℃,the representative device is a PEM water electrolyzer;its core components and respective functions,research status,and design strategies of key materials especially in electrocatalysts are presented and discussed.However,strong acidity,highly oxidative operating conditions,and the sluggish kinetics of the anode reaction of PEM water electrolyzers have limited their further development and shifted our attention to higher operating temperature PEM systems.Increasing the temperature of PEM-based electrocatalytic systems can cause an increase in current density,accelerate reaction kinetics and gas transport and reduce the ohmic value,activation losses,ΔGH*,and power consumption.Moreover,further increasing the operating temperature(120-300℃)of PEM-based devices endows various hydrogen carriers(e.g.,methanol,ethanol,and ammonia)with electrolysis,offering a new opportunity to produce hydrogen using PEM-based electrocatalytic systems.Finally,several future directions and prospects for developing PEM-based electrocatalytic systems for H_(2) production are proposed through devoting more efforts to the key components of devices and reduction of costs. 展开更多
关键词 ELECTROLYSIS hydrogen production proton exchange membrane
在线阅读 下载PDF
Mind the gut:Navigating the complex landscape of gastroprotection in neurosurgical patients 被引量:1
7
作者 Subeikshanan Venkatesan Brandon Lucke-Wold 《World Journal of Gastroenterology》 2025年第8期1-8,共8页
Neurosurgical patients,including those with severe traumatic brain injury,spinal cord injury,stroke,or raised intracranial pressure,are at heightened risk for stress ulcers and aspiration pneumonitis,leading to signif... Neurosurgical patients,including those with severe traumatic brain injury,spinal cord injury,stroke,or raised intracranial pressure,are at heightened risk for stress ulcers and aspiration pneumonitis,leading to significant morbidity and mortality.These patients are typically managed through both pharmacological interventions[e.g.,proton pump inhibitors(PPIs),histamine 2(H2)antagonists,sucralfate]and non-pharmacological measures(e.g.,nasogastric decompression,patient positioning)to mitigate adverse outcomes.The pathogenesis of stress ulcers in neurosurgical patients is multifactorial,but the routine use of stress ulcer prophylaxis remains controversial.While gastric acid suppression with H2 rece-ptor antagonists and PPIs is commonly employed,concerns have arisen regarding the association between elevated gastric pH,bacterial colonization,and ventilator-associated pneumonia.The lack of comprehensive data on gastroprotection in critically ill neurosurgical patients,who face a greater risk than non-neurosurgical counterparts,further complicates this issue.Recent studies,such as one by Gao et al on the efficacy of vonoprazan-amoxicillin dual therapy in elderly patients,highlight the potential of novel therapies,but the influence of pre-existing conditions like Helicobacter pylori infection remains unclear.Non-pharmacological interventions,including nasogastric decompression and early enteral nutrition,are critical in improving outcomes but require further research to refine strategies.This editorial underscores the need for tailored approaches and encourages further investigation into optimal gastroprotective strategies for neurosurgical patients. 展开更多
关键词 GASTROPROTECTION NEUROSURGERY Stress ulcer Proton pump inhibitor Histamine 2 receptor antagonist Vonoprazan Nasogastric tube Enteral nutrition
暂未订购
Pulsed dynamic electrolysis enhanced PEMWE hydrogen production:Revealing the effects of pulsed electric fields on protons mass transport and hydrogen bubble escape 被引量:1
8
作者 Xuewei Zhang Wei Zhou +13 位作者 Yuming Huang Liang Xie Tonghui Li Huimin Kang Lijie Wang Yang Yu Yani Ding Junfeng Li Jiaxiang Chen Miaoting Sun Shuo Cheng Xiaoxiao Meng Jihui Gao Guangbo Zhao 《Journal of Energy Chemistry》 2025年第1期201-214,共14页
The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for... The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors. 展开更多
关键词 Water electrolysis Hydrogen production Pulsed dynamic electrolysis Proton exchange membrane water electrolysis Mass transport
在线阅读 下载PDF
Currents from relativistic laser-plasma interaction as a novel metrology for the system stability of high-repetition-rate laser secondary sources 被引量:1
9
作者 Michael Ehret Iuliana-Mariana Vladisavlevici +16 位作者 Philip Wykeham Bradford Jakub Cikhardt Evgeny Filippov Jose Luis Henares Rubén Hernández Martín Diego de Luis JoséAntonio Pérez-Hernández Pablo Vicente Tomas Burian Enrique García-García Juan Hernández Cruz Mendez Marta Olivar Ruíz Óscar Varela Maria Dolores Rodríguez Frías João Jorge Santos Giancarlo Gatti 《Matter and Radiation at Extremes》 2025年第2期24-34,共11页
This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven second... This work demonstrates experimentally the close relation between return currents from relativistic laser-driven target polarization and the quality of the relativistic laser–plasma interaction for laser-driven secondary sources,taking as an example ion acceleration by target normal sheath acceleration.The Pearson linear correlation of maximum return current amplitude and proton spectrum cutoff energy is found to be in the range from~0.70 to 0.94.kA-scale return currents rise in all interaction schemes where targets of any kind are charged by escaping laser-accelerated relativistic electrons.Their precise measurement is demonstrated using an inductive scheme that allows operation at high repetition rates.Thus,return currents can be used as a metrological online tool for the optimization of many laser-driven secondary sources and for diagnosing their stability.In particular,in two parametric studies of laser-driven ion acceleration,we carry out a noninvasive online measurement of return currents in a tape target system irradiated by the 1 PW VEGA-3 laser at Centro de Láseres Pulsados:first the size of the irradiated area is varied at best compression of the laser pulse;second,the pulse duration is varied by means of induced group delay dispersion at best focus.This work paves the way to the development of feedback systems that operate at the high repetition rates of PW-class lasers. 展开更多
关键词 relativistic laser plasma interaction pearson linear correlation proton spectrum cutoff energy interaction schemes ion acceleration target normal sheath accelerationthe return current return currents
在线阅读 下载PDF
Syntheses,proton conduction,and transport mechanism of two three‑dimensional lanthanum phosphite‑oxalates
10
作者 LU Yang HUANG Liangliang +2 位作者 ZHAO Wei WANG Xin BI Yanfeng 《无机化学学报》 北大核心 2025年第10期2127-2137,共11页
To develop proton-conducting materials with high hydrothermal and acid-base stability and to elucidate the proton-transport mechanism through visualized structural analysis,two new lanthanum phosphite-oxalates with 3D... To develop proton-conducting materials with high hydrothermal and acid-base stability and to elucidate the proton-transport mechanism through visualized structural analysis,two new lanthanum phosphite-oxalates with 3D frameworks,designated as[La(HPO_(3))(C_(2)O_(4))0.5(H_(2)O)_(2)](La‑1)and(C_(6)H_(16)N_(2))(H_(3)O)[La_(2)(H_(2)PO_(3))_(3)(C_(2)O_(4))_(3)(H_(2)O)](La‑2)(C_(6)H_(14)N_(2)=cis-2,6-dimethylpiperazine),were prepared by hydrothermal and solvothermal conduction,respectively.La‑1 was constructed with lanthanum phosphite 2D layers and C_(2)O_(4)^(2-)groups,whereas La‑2 was constructed with lanthanum oxalate 2D layers and H_(2)PO^(3-)groups.Alternating current(AC)impedance spectra indicate that the pro-ton conductivities of both compounds could reach 10^(-4)S·cm^(-1)and remain highly durable at 75℃and 98%of rela-tive humidity(RH).Due to the abundance of H-bonds in La‑2,theσof La‑2 was higher than that of La‑1.La‑1 exhibited excellent water and pH stability.CCDC:2439965,La‑1;443776,La‑2. 展开更多
关键词 OPEN-FRAMEWORK lanthanum phosphite-oxalate proton conductivity stability
在线阅读 下载PDF
Testing Validity of the Isobaric Multiplet Mass Equation in T=3 Isospin Septet
11
作者 LIU Junhao HUA Xiang ZHAO Xi 《原子核物理评论》 北大核心 2025年第2期218-222,共5页
The validity of the isobaric multiplet mass equation(IMME)is of foundamental importance due to the basic concept of isospin.Recently,a serious breakdown was found in the A=54,T=3,isospin septet,the largest isospin sys... The validity of the isobaric multiplet mass equation(IMME)is of foundamental importance due to the basic concept of isospin.Recently,a serious breakdown was found in the A=54,T=3,isospin septet,the largest isospin system where the validity of IMME have been tested up to now.Inspired by this work,I revist the mass of some isobaric analogue states with the help of recent results from advanced mass measurement experiment.It is found that the IMME holds well in A=50 and 46 isospin septet and the coefficients of IMME also follow the systematic trends.Mass excess value for^(50)Ni and^(46)Fe,is predicted to be-3932(20)keV and 898(67)keV,respectively. 展开更多
关键词 ISOSPIN IMME nuclear mass βdecay proton drip-line
原文传递
Proton pump inhibitors and all-cause mortality risk among cancer patients
12
作者 Arunkumar Krishnan Carolin Victoria Schneider Declan Walsh 《World Journal of Clinical Oncology》 2025年第1期34-42,共9页
BACKGROUND Proton pump inhibitors(PPIs)are widely used,including among cancer patients,to manage gastroesophageal reflux and other gastric acid-related disorders.Recent evidence suggests associations between long-term... BACKGROUND Proton pump inhibitors(PPIs)are widely used,including among cancer patients,to manage gastroesophageal reflux and other gastric acid-related disorders.Recent evidence suggests associations between long-term PPI use and higher risks for various adverse health outcomes,including greater mortality.AIM To investigate the association between PPI use and all-cause mortality among cancer patients by a comprehensive analysis after adjustment for various confounders and a robust methodological approach to minimize bias.METHODS This retrospective cohort study used data from the TriNetX research network,with electronic health records from multiple healthcare organizations.The study employed a new-user,active comparator design,which compared newly treated PPI users with non-users and newly treated histamine2 receptor antagonists(H2RA)users among adult cancer patients.Newly prescribed PPIs(esomeprazole,lansoprazole,omeprazole,pantoprazole,or rabeprazole)users were compared to non-users or newly prescribed H2RAs(cimetidine,famotidine,nizatidine,or ranitidine)users.The primary outcome was all-cause mortality.Each patient in the main group was matched to a patient in the control group using 1:1 propensity score matching to reduce confounding effects.Multivariable Cox regression models were used to estimate hazard ratios(HRs)and 95% confidence interval(CI).RESULTS During the follow-up period(median 5.4±1.8 years for PPI users and 6.5±1.0 years for non-users),PPI users demonstrated a higher all-cause mortality rate than non-users after 1 year,2 years,and at the end of follow up(HRs:2.34-2.72).Compared with H2RA users,PPI users demonstrated a higher rate of all-cause mortality HR:1.51(95%CI:1.41-1.69).Similar results were observed across sensitivity analyses by excluding deaths from the first 9 months and 1-year post-exposure,confirming the robustness of these findings.In a sensitivity analysis,we analyzed all-cause mortality outcomes between former PPI users and individuals who have never used PPIs,providing insights into the long-term effects of past PPI use.In addition,at 1-year follow-up,the analysis revealed a significant difference in mortality rates between former PPI users and non-users(HR:1.84;95%CI:1.82-1.96).CONCLUSION PPI use among cancer patients was associated with a higher risk of all-cause mortality compared to non-users or H2RA users.These findings emphasize the need for cautious use of PPIs in cancer patients and suggest that alternative treatments should be considered when clinically feasible.However,further studies are needed to corroborate our findings,given the significant adverse outcomes in cancer patients. 展开更多
关键词 All-cause mortality CANCER Histamine-2 receptor antagonists MORTALITY MALIGNANCY Proton pump inhibitors CARCINOMA OUTCOME
暂未订购
Significantly Enhanced Oxygen Reduction Reaction Activity in Co-N-C Catalysts through Synergistic Boron Doping
13
作者 Chang Lan Jing-Sen Bai +8 位作者 Xin Guan Shuo Wang Nan-Shu Zhang Yu-Qing Cheng Jin-Jing Tao Yu-Yi Chu Mei-Ling Xiao Chang-Peng Liu Wei Xing 《电化学(中英文)》 北大核心 2025年第9期56-68,共13页
The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance dis-parity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction(ORR).In this wor... The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance dis-parity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction(ORR).In this work,we strategi-cally engineer the active site structure of Co-N-C via B substitution,which is accomplished by the pyrolysis of ammonium borate.During this process,the in-situ generated NH_(3)gas plays a critical role in creating surface defects and boron atoms substituting nitrogen atoms in the carbon structure.The well-designed CoB_(1)N_(3)active site endows Co with higher charge density and stronger adsorption energy toward oxygen species,potentially accelerating ORR kinetics.As expected,the resulting Co-B/N-C catalyst exhibited superior ORR performance over Co-N-C counterpart,with 40 mV,and fivefold en-hancement in half-wave potential and turnover frequency(TOF).More importantly,the excellent ORR performance could be translated into membrane electrode assembly(MEA)in a fuel cell test,delivering an impressive peak power density of 824 mW·cm^(-2),which is currently the best among Co-based catalysts under the same conditions.This work not only demon-strates an effective method for designing advanced catalysts,but also affords a highly promising non-precious metal ORR electrocatalyst for fuel cell applications. 展开更多
关键词 Oxygen reduction reaction Proton exchange membrane fuel cell Single-atom catalyst Co-N-C Boron doping
在线阅读 下载PDF
Energetic proton radiation effects on the super large array 9k×9k CCDs used in a space telescope
14
作者 WANG Zujun WANG Xiaodong +9 位作者 YANG Ye TANG Ning YAN Shixing LIU Changju GUO Xiaoqiang SHENG Jiangkun GOU Shilong LYU Wei YE Wenbo WANG Zhongming 《中国空间科学技术(中英文)》 北大核心 2025年第5期143-149,共7页
To know about the radiation effects on the super large array 9 k×9 k CCDs used in a space telescope induced by energetic protons,the experiments of the super large array 9 k×9 k charge coupled devices(CCDs)u... To know about the radiation effects on the super large array 9 k×9 k CCDs used in a space telescope induced by energetic protons,the experiments of the super large array 9 k×9 k charge coupled devices(CCDs)used in the space telescope irradiated by 60 MeV and 100 MeV protons are presented.The samples were exposed by 60 MeV and 100 MeV protons at fluences of 5×10^(9)/cm^(2) and 1×10^(10)/cm^(2),respectively.The degradations of the main performance parameters of the super large array CCDs which are paid special attention to the space telescope are investigated.The full well capacity,mean dark current,and the charge transfer inefficiency(CTI)versus proton fluence are presented,which are tested at very low temperature of-85℃.The annealing tests of 168 h were carried out after proton irradiation.The dark images before and after proton irradiation are also presented to compare the image degradation.The degradation mechanisms of the super large array CCDs irradiated by protons are analyzed.The experimental results show that the main performance parameters of the CCDs are degraded after 60 MeV and 100 MeV protons and the degradations induced by 60 MeV protons are larger than that induced by 100 MeV protons.The experimental results of the super large array CCDs irradiated by protons will provide the basic test data support for orbit life assessment of the space telescope. 展开更多
关键词 charge coupled device(CCD) proton irradiation full well capacity dark current charge transfer inefficiency(CTI)
在线阅读 下载PDF
Ionic Liquid Enhanced Proton Transfer for Neutral Oxygen Evolution Reaction
15
作者 Ming-Xing Chen Nian Liu +2 位作者 Zi-He Du Jing Qi Rui Cao 《电化学(中英文)》 北大核心 2025年第7期27-36,共10页
The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled elec... The development of highly active catalyst in pH-neutral media for oxygen evolution reaction(OER)is critical in the field of renewable energy storage and conversion.Nevertheless,the slow kinetics of proton-coupled electron transfer(PCET)hinders the overall OER efficiency.Herein,we report an ionic liquid(IL)modified CoSn(OH)_(6)nanocubes(denoted as CoS-n(OH)_(6)-IL),which could be prepared through a facile strategy.The modified IL would not change the structural character-istics of CoSn(OH)_(6),but could effectively regulate the local proton activity near the active sites.The CoSn(OH)_(6)-IL exhibited higher intrinsic OER performances than the pristine CoSn(OH)_(6)in neutral media.For example,the current density of CoS-n(OH)_(6)-IL at 1.8 V versus reversible hydrogen electrode(RHE)was about 4 times higher than that of CoSn(OH)_(6).According to the pH-dependent kinetic investigations,operando electrochemical impedance spectroscopic,chemical probe tests,and deuterium kinetic isotope effects,the interfacial layer of IL could be utilized as a proton transfer mediator to promote the proton transfer,which enhances the surface coverage of OER intermediates and reduces the activation barrier.Consequent-ly,the sluggish OER kinetics would be efficiently accelerated.This study provides a facile and effective strategy to facilitate the PCET processes and is beneficial to guide the rational design of OER electrocatalysts. 展开更多
关键词 ELECTROCATALYSIS Oxygen evolution reaction Ionic liquid Proton transfer CoSn(OH)_(6)nanocube
在线阅读 下载PDF
PEMFCs degradation prediction based on ENSACO-LSTM
16
作者 JIA Zhi-huan CHEN Lin +2 位作者 SHAO Ao-li WANG Yu-peng GAO Jin-wu 《控制理论与应用》 北大核心 2025年第8期1578-1586,共9页
In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel... In this paper,a fusion model based on a long short-term memory(LSTM)neural network and enhanced search ant colony optimization(ENSACO)is proposed to predict the power degradation trend of proton exchange membrane fuel cells(PEMFC).Firstly,the Shapley additive explanations(SHAP)value method is used to select external characteristic parameters with high contributions as inputs for the data-driven approach.Next,a novel swarm optimization algorithm,the enhanced search ant colony optimization,is proposed.This algorithm improves the ant colony optimization(ACO)algorithm based on a reinforcement factor to avoid premature convergence and accelerate the convergence speed.Comparative experiments are set up to compare the performance differences between particle swarm optimization(PSO),ACO,and ENSACO.Finally,a data-driven method based on ENSACO-LSTM is proposed to predict the power degradation trend of PEMFCs.And actual aging data is used to validate the method.The results show that,within a limited number of iterations,the optimization capability of ENSACO is significantly stronger than that of PSO and ACO.Additionally,the prediction accuracy of the ENSACO-LSTM method is greatly improved,with an average increase of approximately 50.58%compared to LSTM,PSO-LSTM,and ACO-LSTM. 展开更多
关键词 proton exchange membrane fuel cells swarm optimization algorithm performance aging prediction enhanced search ant colony algorithm data-driven approach deep learning
在线阅读 下载PDF
High-entropy oxide ceramics for detecting the ionic conductivity component in electron conductors 被引量:1
17
作者 A.V.Shlyakhtina E.D.Baldin +2 位作者 N.V.Gorshkov D.N.Stolbov N.V.Lyskov 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2666-2675,共10页
A series of solid solutions with high content of Tb_(2)O_(3)-(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.667-0.830)are synthesized in the Tb_(2)O_(3)-TiO_(2)system via co-precipitation and/or mechanical activation.This is followed ... A series of solid solutions with high content of Tb_(2)O_(3)-(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.667-0.830)are synthesized in the Tb_(2)O_(3)-TiO_(2)system via co-precipitation and/or mechanical activation.This is followed by high-temperature annealing for 4-22 h.The X-ray diffrac-tion method showed that the fluorite structure was realized for(Tb_(x)Ti_(1−x))4O_(8−2x)(x=0.75-0.817).The solid solution Tb_(3.12)Ti_(0.88)O_(6.44)(64mol%Tb_(2)O_(3)(x=0.78))with a fluorite structure exhibited a maximum hole conductivity of~22 S/cm at 600℃.To separate the ionic component of the conductivity in the electronic conductor Tb_(3.12)Ti_(0.88)O_(6.44),its high entropy analogue,(La_(0.2)Gd_(0.2)Tm_(0.2)Lu_(0.2)Y_(0.2))_(3.12)Ti_(0.88)O_(6.44),was synthesized in which all rare-earth elements(REE)cations exhibited valency of+3.Consequently,the contribution of ionic(proton)conductivity(~7×10^(−6)S/cm at 600℃)was revealed with respect to the background of dominant hole conductivity.The proton conduct-ivity of high-entropy oxide(HEО)(La_(0.2)Gd_(0.2)Tm_(0.2)Lu_(0.2)Y_(0.2))_(3.12)Ti_(0.88)O_(6.44)was confirmed by the detection of the isotope effect,where the mobility of the heavier O-D ions was lower than that of the O-H hydroxyls,resulting in lower conductivity in D_(2)O vapors when com-pared to H_(2)O. 展开更多
关键词 CO-PRECIPITATION mechanical activation FLUORITE (Tb_(x)Ti_(1−x))4O8−2x hole conductivity proton conductivity HEO(La0.2Gd0.2Tm0.2Lu0.2Y0.2)_(3.12)Ti_(0.88)O6.44
在线阅读 下载PDF
Idle speed control of proton exchange membrane fuel cell system via extended Kalman filter observer
18
作者 ZHAO Hong-hui DING Tian-wei +4 位作者 WANG Yi-lin HUANG Xing DU Jing HAO Zhi-qiang MIN Hai-tao 《控制理论与应用》 北大核心 2025年第8期1615-1624,共10页
When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is... When the proton exchange membrane fuel cell(PEMFC)system is running,there will be a condition that does not require power output for a short time.In order to achieve zero power output under low power consumption,it is necessary to consider the diversity of control targets and the complexity of dynamic models,which brings the challenge of high-precision tracking control of the stack output power and cathode intake flow.For system idle speed control,a modelbased nonlinear control framework is constructed in this paper.Firstly,the nonlinear dynamic model of output power and cathode intake flow is derived.Secondly,a control scheme combining nonlinear extended Kalman filter observer and state feedback controller is designed.Finally,the control scheme is verified on the PEMFC experimental platform and compared with the proportion-integration-differentiation(PID)controller.The experimental results show that the control strategy proposed in this paper can realize the idle speed control of the fuel cell system and achieve the purpose of zero power output.Compared with PID controller,it has faster response speed and better system dynamics. 展开更多
关键词 proton exchange membrane fuel cell idle speed control zero power output output power nonlinear model extended Kalman filter observer
在线阅读 下载PDF
Tailoring active chemical environment of naphthoquinone-based cathodes with rapid kinetics for aqueous batteries
19
作者 Jun Guo Shuang Song +11 位作者 Zhenyu Hu Li Lin Lianshan Sun Qingshuang Wang Jianxun Zhao Peng Chen Xinwei Wang Heng Liu Wanqiang Liu Wei Liu Chunpeng Yang Fang Wang 《Carbon Energy》 2025年第7期25-35,共11页
Organic electrode materials(OEMs)have garnered great attention for aqueous Zn-ion batteries(AZIBs)owing to their flexible designability and sustainable resources.However,the sluggish reaction kinetics and low active s... Organic electrode materials(OEMs)have garnered great attention for aqueous Zn-ion batteries(AZIBs)owing to their flexible designability and sustainable resources.However,the sluggish reaction kinetics and low active site utilization have strongly restricted their development due to the competitive coordination of H^(+)and Zn^(2+)in weakly acidic zinc electrolytes.Herein,we design a symmetric naphthoquinone-based cathode,2,3-dimethoxynaphthalene-1,4-dione(DMeNQ),with rational functional groups to facilitate proton coordination chemistry and accomplish improved ability to capture with zinc ion.The carbonyl and methoxy groups on the DMeNQ construct hydrogen bond networks and serve as a“proton pump”to expedite proton conduction through the Grotthuss-type mechanism.Density functional theory calculations have visualized the formation of“ion traps,”while in situ Raman spectra have tracked the reversible evolution of the active sites.Accordingly,the DMeNQ delivers a high capacity of 245mAhg^(−1)(99.6%utilization of the active groups)and a long lifetime of 50,000 cycles at 40 C in AZIBs.In addition,the DMeNQ also possesses a superior rate capability of 85mAh g^(−1)and a satisfactory cycle life of over 150,000 cycles at 400 C in proton batteries.Our results provide an effective pathway for high-performance OEMs. 展开更多
关键词 aqueous Zn-ion batteries ion traps NAPHTHOQUINONE organic electrode materials proton batteries proton pump
在线阅读 下载PDF
Enhanced MVA of polarized proton beams via PW laser-driven plasma bubble
20
作者 Zhikun Zou Gan Guo +4 位作者 Meng Wen Bin Liu Xue Yan YangjiéLiu Luling Jin 《Matter and Radiation at Extremes》 2025年第3期36-45,共10页
The significance of laser-driven polarized beam acceleration has been increasingly recognized in recent years.We propose an efficient method for generating polarized proton beams from a pre-polarized hydrogen halide g... The significance of laser-driven polarized beam acceleration has been increasingly recognized in recent years.We propose an efficient method for generating polarized proton beams from a pre-polarized hydrogen halide gas jet,utilizing magnetic vortex acceleration enhanced by a laser-driven plasma bubble.When a petawatt laser pulse passes through a pre-polarized gas jet,a bubble-like ultra-nonlinear plasma wave is formed.As a portion of the particles constituting this wave,background protons are swept by the acceleration field of the bubble and oscillate significantly along the laser propagation axis.Some of the pre-accelerated protons in the plasma wave are trapped by the acceleration field at the rear side of the target.This acceleration field is intensified by the transverse expansion of the laser-driven magnetic vortex,resulting in energetic polarized proton beams.The spin of energetic protons is determined by their precession within the electromagnetic field,which is described using the Thomas-Bargmann-Michel-Telegdi equation in analytical models and particle-in-cell simulations.Multidimensional simulations reveal that monoenergetic proton beams with an energy of hundreds of MeV,a beam charge of hundreds of pC,and a beam polarization of tens of percent can be produced at laser powers of several petawatts.Such laser-driven polarized proton beams have promise for application in polarized beam colliders,where they can be utilized to investigate particle interactions and to explore the properties of matter under extreme conditions. 展开更多
关键词 polarized proton beams Thomas Bargmann Michel Telegdi equation petawatt laser pulse proton beam polarization magnetic vortex acceleration laser driven plasma bubble generating polarized proton beams particle cell simulations
在线阅读 下载PDF
上一页 1 2 87 下一页 到第
使用帮助 返回顶部